The Uses of Electron and Nuclear Magnetic Resonance and Nuclear Resonance Fluorescence In Studies of Glass

  • R. A. Weeks
Conference paper


A legitimate question which one might ask about the title of this exposition is: what does “resonance” mean? In searching for an answer it is reasonable to consider the precedents for its usage. In Schiff’s book on Quantum Mechanics, the term is used in two ways: (1) The scattering of a particle by a potential is said to be “resonance scattering” when certain relations between the scattered particle and the potential from which it is scattered obtain.1 (2) A property of two classical oscillators which are in resonance (same unperturbed frequency) gives rise to two normal modes whose frequencies are lower and higher than the unperturbed frequency.1 This characteristic of interacting harmonic oscillations in quantum mechanics provides a basis for the theory of homopolar binding in molecules. Pauling and Wilson note that it arises whenever a system contains two or more identical particles. Another use of the term is found in the description of events which occur when an atom decays from an excited state and the emitted photon passes through a gas of the same kind of atoms being absorbed in the process and raising another atom to the same excited state as the one from which it was emitted.


Hyperfine Interaction Resonance Transition Paramagnetic Center Phosphate Glass Type Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. I. Schiff, Quantum Mechanics, pp. 112 & 292, McGraw Hill Book Co., New York, 1949.Google Scholar
  2. 2.
    L. Pauling and E. B. Wilson, Introduction to Quantum Mechanics, p. 321, McGraw-Hill Book Co., New York, 1935.Google Scholar
  3. 3.
    P. Pringsheim, Fluorescence and Phosphorescence, Interscience, New York, 1949.Google Scholar
  4. 4.
    J. W. Orton, Electron Paramagnetic Resonance, London Iliffe Books, Ltd., LondonGoogle Scholar
  5. J. A. McMillan, Electron Paramagnetism, Reinbold Book Corp., N.Y., 1968Google Scholar
  6. W. Low and E. L. Offenbacker, Electron Spin Resonance of Magnetic Ions in Complex Oxides. Review of ESR Results in Rutile, Perovskites, Spinel and Garnet Structures, in Solid State Physics 17, 136, Ed. by F. Seitz and D. Turnbull, Academic Press, N.Y., 1965.Google Scholar
  7. 5.
    A. Abragam, The Principles of Nuclear Magnetism, Oxford University Press, London, 1963Google Scholar
  8. G. E. Pake, Nuclear Magnetic Resonance, in Solid State Physics 2, 1 (1954); Spin Temperature and Nuclear Relaxation in Solids, in Solid Statp Physics 15, 409 (1963).Google Scholar
  9. 6.
    H. Frauenfelder, The Mossbauer Effect, W. A. Benjamin Inc., N.Y., 1962Google Scholar
  10. G. K. Wertheim, Mossbauer Effect: Principles and Applications, Academic Press, N.Y. 1964.Google Scholar
  11. 7.
    G. Burns, J. Appl. Phys. 32, 2048 (1961).CrossRefGoogle Scholar
  12. 8.
    E. Sonder and W. A. Sibley, Defect Creation in Polar Crystals, in Solids, Edited by J. H. Crawford, Plenum Publ. Corp., N.Y., to be published.Google Scholar
  13. 9.
    Y. Chen and W. A. Sibley, Phys. Rev. 154, 842 (1967)CrossRefGoogle Scholar
  14. W. D. Compton and G. W. Arnold, Disc. of Faraday Soc. 31, 130 (1961).CrossRefGoogle Scholar
  15. 10.
    W. A. Sibley and Y. Chen, Phys. Rev. 160, 712 (1967).CrossRefGoogle Scholar
  16. 11.
    T. Purcell and R. A. Weeks, J. Phys. Chem. Glasses 10(5), 201 (1969).Google Scholar
  17. 12.
    R. A. Weeks, J. Appl. Phys. 27, 1376 (1956)CrossRefGoogle Scholar
  18. R. A. Weeks, Phys. Rev. 130, 570 (1963)CrossRefGoogle Scholar
  19. R. A. Weeks and E. Sonder, The Relation between the Magnetic Susceptibility, Electron Spin Resonance and Optical Absorption of the E1 center in Fused Silica, in Paramagnetic Resonance Vol. 2, p. 869, Edited by W. Low, Academic Press, N.Y., 1963Google Scholar
  20. R. A. Weeks and E. Lell, J. Appl. Phys. 35, 1932 (1964)CrossRefGoogle Scholar
  21. J. G. Castle, D. W. Feldman, P. G. Klemens and R. A. Weeks, Phys. Rev. 130, 577 (1963). In this latter paper an oxygen divacancy model was tentatively proposed for the E1 center. Subsequent research has shown that a single oxygen vacancy which has trapped an electron has properties in excellent agreement with the available data.CrossRefGoogle Scholar
  22. 13.
    J. Anderson and J. Weil, J. Chem. Phys. 31, 427 (1959)CrossRefGoogle Scholar
  23. 14.
    R. A. Weeks and T. Purcell, J. Chem. Phys, 43, 483 (1965).CrossRefGoogle Scholar
  24. 15.
    R. A. Weeks and P. J. Bray, J. Chem. Phys. 48, 5 (1968).CrossRefGoogle Scholar
  25. 16.
    D. L. Griscom, BAPS 15, 314 March 1970.Google Scholar
  26. 17.
    J. Biscoe and B. E. Warren, J. Amer. Cer. Soc. 21, 287 (1938).CrossRefGoogle Scholar
  27. 18.
    P. J. Bray, Magnetic Resonance Studies of Bonding, Structure and Diffusion in Crystalline and Vitreous Solids, in Interaction of Radiation with Solids, p. 25, Edited by A. Bishay, Plenum Press, N.Y., 1967.Google Scholar
  28. 19.
    D. K. Stevens, W. J. Sturm and R. H. Silsbee, J. Appl. Phys. 29, 66 (1958).CrossRefGoogle Scholar
  29. 20.
    M. C. Wittels, Phil. Mag. 2, 1445 (1957).CrossRefGoogle Scholar
  30. 21.
    R. Comes, M. Lambert and A. Guinier, “Mechanism of the Transformation of Crystalline Quartz into Amorphous Silica by Neutron Irradiation”, in Interaction of Radiation with Solids, p. 319, Edited by A. Bishay, Plenum Press, N.Y. 1967.Google Scholar
  31. 22.
    E. Lell, N.J. Kreidl and J. Raymond Hensler, “Radiation Effects in Quartz, Silica and Glass”, in Progress in Ceramic Science 4, 4-9, Edited by J.E. Burke, Pergamon Press, 1966.Google Scholar
  32. 23.
    R. A. Weeks and C. M. Nelson, J. Amer. Cer. Soc. 43, 399 (1960).CrossRefGoogle Scholar
  33. 24.
    R. A. Weeks and M. M. Abraham, BAPS 10, 374 (1965).Google Scholar
  34. 25.
    T. Purcell and R. A. Weeks, unpublished data.Google Scholar
  35. 26.
    R. A. Weeks, Phys. Rev. 130, 570 (1963).CrossRefGoogle Scholar
  36. 27.
    R. A. Weeks, unpublished data. At this distance, the hyperfine interaction is of the same order of magnitude as the interaction between the hydrogen nucleus and the magnetic field, i.e., 5 gauss. One consequence of this equivalence is that the doublet structure shown in Fig. 7 is replaced by a quartet of equally spaced (5 gauss separation) lines of almost equal intensity. That this structure is due to the hyperfine interaction of the E’ electron with a hydrogen nucleus is confirmed by measurements at a higher frequency for which the interaction between magnetic field and the hydrogen nucleus is ∿2.5 times larger. At this field the expected doublet structure is observed with a 5 gauss splitting. The outer two lines are detected but with greatly reduced intensity (∿0.1 the intensity of the two central lines) and separated from the two central lines by ∿12 gauss, the magnitude of the interaction between the hydrogen nucleus and the applied magnetic field.Google Scholar
  37. 28.
    R. A. Weeks, “Some Defect States of Pure Four-Fold Coordinated Oxides: Expectations and Realization” in Interactions of Radiation with Solids, p.55, Edited by A. Bishay, Plenum Press, New York, 1967.Google Scholar
  38. 29.
    D. L. Griscom, P. C. Taylor, D. A. Ware, and P. J. Bray, J. Chem. Phys. 48, 5158 (1969).CrossRefGoogle Scholar
  39. 30.
    D. L. Griscom, P. C. Taylor, and P. J. Bray, Submitted to J. Chem. Phys.Google Scholar
  40. 31.
    J. O. Edwards, D. L. Griscom, R. B. Jones, K. L. Watters and R. A. Weeks, J. Am. Chem. Soc. 91, 1095 (1969).CrossRefGoogle Scholar
  41. 32.
    V. M. Kim and P. J. Bray, private communication, a paper on this topic has been submitted for publication.Google Scholar
  42. 33.
    R. J. Landry, J. J. Fournier and C. G. Young, J. Chem. Phys. 46, 1285 (1967)CrossRefGoogle Scholar
  43. G. Hochstrasser, Phys. Chem. Glasses 7, 178 (1966)Google Scholar
  44. G. Hirayama, J. G. Castle, and M. Kuriyama, Phys. and Chem. Glasses 9, 109 (1968)Google Scholar
  45. H. G. Hecht, Phys. Chem. Glasses 9, 179 (1968).Google Scholar
  46. 34.
    T. Purcell and R. A. Weeks, accepted for publication in J. Chem. Phys.Google Scholar
  47. 35.
    A. Chatelain and R. A. Weeks, J. Chem. Phys. 52, 3758 (1970).CrossRefGoogle Scholar
  48. 36.
    D. L. Griscom and R. E. Griscom, J. Chem. Phys. 47(8), 2711 (1967).CrossRefGoogle Scholar
  49. 37.
    There are many references. A recent one containing detailed computer programs is “Lineshape Program Manual” by P. C. Taylor and P. J. Bray, Department of Physics, Brown University, Providence, Rhode Island. This manual contains programs applicable to both EPR and NMR problems. There is also an excellent introduction to this type of problem in Electron Paramagnetism by Juan A. McMillian, p. 152-162, Reinhold Book Corporation, New York, 1968.Google Scholar
  50. 38.
    M. H. Cohen and F. Reif, Nuclear Quadrupole Effects in Solids, in Solid State Physics 5, 321, Edited by Seitz and Turnbull, Academic Press, 1957.CrossRefGoogle Scholar
  51. 39.
    A. M. Stonehan, Rev. of Mod. Phys. 41, 82 (1969).CrossRefGoogle Scholar
  52. 40.
    J. F. Baugher, P. C. Taylor, T. Oja, and P. J. Bray, J. Chem. Phys. 50, 4914 (1969).CrossRefGoogle Scholar
  53. 41.
    P. J. Bray, “N. M. R. Studies of Glasses and Related Crystalline Solids” in Magnetic Resonance Edited by C. K. Cougan, N. S. Ham, S. N. Stewart, J. R. Pilbrow and G. V. H. Wilson, Plenum Press, New York, 1970.Google Scholar
  54. 42.
    B. E. Warren, J. Amer. Cer. Soc. 24, 256 (1941).CrossRefGoogle Scholar
  55. 43.
    H. M. Kriz, S. C. Bishop, and P. J. Bray, J. Chem. Phys. 49, 557 (1968).CrossRefGoogle Scholar
  56. 44.
    N. Bloembergen, E. M. Purcell and R. V. Pound, Phys. Rev. 73, 679 (1949).CrossRefGoogle Scholar
  57. 45.
    S. G. Bishop and P. J. Bray, J. Chem. Phys. 48, 1709 (1968).CrossRefGoogle Scholar
  58. 46.
    C. P. Slichter, Principles of Magnetic Resonance, Harper and Row, N.Y. 1963.Google Scholar
  59. 47.
    R. A. Weeks, A. Chatelain, D. Kline and J. L. Kolopus, Geochimica et Cosmochin. Acta, Proceedings of the Apollo 11 Lunar Science Conference, Houston, Texas from 5-8, 1970. Supplement 1, volume 3, p. 2467.Google Scholar
  60. 48.
    D. W. Jones, R. S. Mathews, N. Ruddlesden and D. J. Williams, J. Am. Cer. Soc., 51(11), 664 (1968).CrossRefGoogle Scholar
  61. 49.
    D. E. Woessner and B. S. Snowden, J. Chem. Phys. 50(4), 1516 (1969).CrossRefGoogle Scholar
  62. 50.
    C. R. Kurkjian, J. of Non-Cryst. Solids 3(2), 157 (1970).CrossRefGoogle Scholar
  63. 51.
    B. H. Zimmerman, H. Jena, E. Isshinko, H. Kiban and D. Segboth, Phys. Status Solidi 27, 639 (1965)CrossRefGoogle Scholar
  64. C. Czyjek, J. L. C. Ford, Jr., J. C. Love, F. E. Obenshain and H. H. F. Weggener, Phys. Rev. 174, 331 (1968).CrossRefGoogle Scholar
  65. 52.
    C. R. Kurkjian and E. A. Sigety, Phys. Chem. Glasses 9, 73 (1968).Google Scholar
  66. 53.
    M. G. Clark, G. M. Bancroft, and A. J. Stone, J. Chem. Phys. 47, 4250 (1967).CrossRefGoogle Scholar
  67. 54.
    D. L. Uhrich and R. G. Barnes, Phys. Chem. Glasses 9, 184 (1968).Google Scholar
  68. 55.
    L. M. Martarese, J. S. Wells, and R. L. Peterson, BAPS 9, 502 (1964).Google Scholar
  69. 56.
    L. M. Martarese, J. S. Wells, and R. L. Peterson, J. Chem. Phys. 50, 2350 (1969).CrossRefGoogle Scholar
  70. 57.
    W. A. Deer, R. A. Howie, and J. Zussman, Rock Forming Minerals, Vol. I., John Wiley and Sons, New York, 1962.Google Scholar
  71. 58.
    D. Vinro and S. Hafner, Mineral Soc. Amer. Special Paper 2, 67 (1969).Google Scholar
  72. 59.
    P. E. Champness and P. Gay, Nature 218, 157 (1968).CrossRefGoogle Scholar
  73. 60.
    R. A. Weeks, J. L. Kolopus, A. Chatelain, and D. Kline, “Paramagnetic Resonance Spectra of Some Silicate Minerals, Semiannual Technical Progress Report, December 31, 1968, Ornl Cf No. 69-3-5.Google Scholar
  74. 61.
    Handbook of Chemistry and Physics, 44th Edition, p. 3507-8, Chem. Rubber Pub. Co., 1962.Google Scholar
  75. 62.
    Selected from Table 3-1 p. 37-39. The Mossbauer Effect, H. Frauenfelder, W. A. Benjamin, New York, 1962, and from Table 2, p. 173, Mossbauer Spectroscopy in Inorganic Glasses, C. R. Kurkjian, J. Non-Crystalline Solids 3, 157 (1970).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • R. A. Weeks
    • 1
  1. 1.Solid State DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations