Advertisement

The Strength of Glass

  • William C. LaCourse

Abstract

The search for new high strength materials has always been one of the more active areas in the materials sciences, and while glass is not normally catagorized with high strength metallic alloys and crystalline ceramics, it does have particular properties which will warrant, or necessitate, its use in many new applications.

Keywords

Plastic Flow Stress Corrosion Fatigue Limit Stress Concentration Factor Static Fatigue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. D. Kingery, Introduction to Ceramics, John Wiley & Sons, New York (1960).Google Scholar
  2. 2.
    I. Naray-Szabo and J. Ladik, Nature 188, 226 (1960).CrossRefGoogle Scholar
  3. 3.
    I. Naray-Szabo, Pg. 327 in Symposium sur la Resistance Mechanique du Verre et les Moyens de l’Ameliorer, Union Scientifique Continentale du Verre, Charleroi, Belgium (1962).Google Scholar
  4. 4.
    E.U. Condon, Am. J. Phys. 22, 224 (1954).CrossRefGoogle Scholar
  5. 5.
    S. Spinner, J. Am. Ceram. Soc. 37, 229 (1954).CrossRefGoogle Scholar
  6. 6.
    R. J. Charles, Pg. 1 in Progress in ceramic Science, Vol. 1, J. E. Burke, editor, Pergamon Press, N.Y. (1961).Google Scholar
  7. 7.
    W. B. Hillig, Pg. 295 in Symposium sur la Resistance Mechanique du Verre et les Moyens de l’Ameliorer, Union Scientifique Continentale du verre, charleroi, Belgium (1962).Google Scholar
  8. 8.
    F. P. Mallinder and B. A. Proctor, Phys Chem. Glasses 5, 91 (1964).Google Scholar
  9. 9.
    J. C. Phillips, Glass Tech. 5, 216 (1964).Google Scholar
  10. 10.
    W. Capps and D. H. Blackburn, Nat Bur. Stand. Rept. 5188 (1957).Google Scholar
  11. 11.
    M. L. Williams and G. E. Scott, Glass Tech. 11, 76 (1970).Google Scholar
  12. 12.
    C. H. Greene, Glass Tech. 7, 54 (1966).Google Scholar
  13. 13.
    B. A. Proctor, Appl. Mat. Res. 3, 28 (1964).Google Scholar
  14. 14.
    R. H. Kropschott and R. P. Mikeseil, J. Appl. Phys. 28, 610 (1957).CrossRefGoogle Scholar
  15. 15.
    J. G. Morley, P. A. Andrews and I. Whitney, Phys. Chem. Glasses 5, 1 (1964).Google Scholar
  16. 16.
    N. M. Cameron, Glass Tech. 9, 14 (1968).Google Scholar
  17. 17.
    N. M. Cameron, Ibid, Pg. 121.Google Scholar
  18. 18.
    J. E. Ritter and A. R. Cooper, jr., Phys. Chem. Glasses 4, 76 (1963).Google Scholar
  19. 19.
    R. J. Charles, J. Appl. Phys. 29, 1549 (1958).CrossRefGoogle Scholar
  20. 20.
    R. J. Charles, Ibid. Pg. 1554.Google Scholar
  21. 21.
    R. J. Charles, J. Appl. Phys. 29, 1657 (1958).CrossRefGoogle Scholar
  22. 22.
    W. Brearley and D. G. Holloway, Phys. Cham. Glasses 4, 69 (1963).Google Scholar
  23. 23.
    W. Brearley, P. A. P. Hastilow and D. G. Holloway, Phys. Chem. Glasses 3, 181 (1962).Google Scholar
  24. 24.
    R. E. Mould and R. D. Southwick, J. Am. Ceram. Soc. 42, 582 (1959).CrossRefGoogle Scholar
  25. 25.
    C. H. Greene, J. Am. Ceram. Soc. 39, 66 (1956).CrossRefGoogle Scholar
  26. 26.
    B. Proctor, Phys. Chem. Glasses 3, 7 (1962).Google Scholar
  27. 27.
    C. Symmers, J. B. Ward and B. Sugarman, Phys. Chem. Glasses 3, 76 (1962).Google Scholar
  28. 28.
    J. E. Ritter, Jr., Phys. Chem. Glasses 11, 16 (1970).Google Scholar
  29. 29.
    J. E. Ritter, Jr., J. Appl. Phys. 40, 340 (1969).CrossRefGoogle Scholar
  30. 30.
    C. E. Inglis, Trans. Inst. Naval Arch. 55, 219 (1913).Google Scholar
  31. 31.
    A. A. Griffith, Phil. Trans. Roy. Soc. 221A, 163 (1920).Google Scholar
  32. 32.
    W. B. Hillig, Pg. 152 in Modern Aspects of the Vitreous State Vol. 2, J. O. Mackenzie, editor, Butterworths, London (1962).Google Scholar
  33. 33.
    C. J. Phillips, Amer. Sci. 53, 20 (1965).Google Scholar
  34. 34.
    E. N. Da, C. Andrade and L. C. Tsien, Proc. Roy. Soc. A159, 346 (1937).Google Scholar
  35. 35.
    F. M. Ernsberger, Phys. Chem. Glasses 1, 37 (1960).Google Scholar
  36. 36.
    F. M. Ernsberger, Proc. Roy. Soc. A257, 213 (1960).Google Scholar
  37. 37.
    F. M. Ernsberger, Pg. 511 in Advances in Glass Technology, Plenum Press, N.Y. (1962).Google Scholar
  38. 38.
    F. M. Ernsberger, Pg. 57 in Progress in Ceramic Science, Vol. 3, J. E. Burke, editor, The Macmillan Co., N.Y. (1963).Google Scholar
  39. 39.
    F. M. Ernsberger, Glass Ind. 47, 300,481, and 542 (1966).Google Scholar
  40. 40.
    E. Orowan, Nature 154, 341 (1944).CrossRefGoogle Scholar
  41. 41.
    W. C. Levengood and W. H. Johnson, J. Chem. Phys. 26, 1184 (1957).CrossRefGoogle Scholar
  42. 42.
    R. J. Charles and W. B. Hillig, Pg. 511 in Symposium sur la Resistance Mechanigue du Verre et les Moyens de l’Ameliorer. Union Scientifigue Continentale du Verre, Charleroi, Belgium (1962).Google Scholar
  43. 43.
    R. J. Charles and W. B. Hillig, Pg. 682 in High Strength Materials, V. F. Mackey, editor, John Wiley and Sons, N.Y. (1965).Google Scholar
  44. 44.
    S. Glasstone, K. Laidler and H. Eyring, The Theory of Rate Processes, McGraw Hill Book Co., Inc., N.Y. (1941).Google Scholar
  45. 45.
    R. E. Mould, J. Am. Ceram. Soc. 43, 160 (1960).CrossRefGoogle Scholar
  46. 46.
    R. E. Mould and R. D. Southwick, J. Am. Ceram. Soc. 42, 542 (1959).CrossRefGoogle Scholar
  47. 47.
    R. W. Mould, J. Am. Ceram. Soc. 44, 481 (1961).CrossRefGoogle Scholar
  48. 48.
    D. M. Marsh, Proc. Roy. Soc. A279, 420 (1964).Google Scholar
  49. 49.
    D. M. Marsh, Proc. Roy. Soc. A282, 33 (1964).Google Scholar
  50. 50.
    B. A. Proctor, I. Whitney and J. W. Johnson, Proc. Roy. Soc. A297, 534 (1967).Google Scholar
  51. 51.
    C. Gurney and S. Pearson, Proc. Phys. Soc. (London), 62B, 469 (1949).Google Scholar
  52. 52.
    I. Whitney, J. W. Johnson and B. A. Proctor, Nature, Lond. 210, 730 (1966).CrossRefGoogle Scholar
  53. 53.
    A. L. Prantis, J. Am. Ceram. Soc. 52, 340 (1969).CrossRefGoogle Scholar
  54. 54.
    E. B. Shand, J. Am. Ceram. Soc. 53, 53 (1970).CrossRefGoogle Scholar
  55. 55.
    M. Watanbe, R. V. Caporali and R. E. Mould, Phys. Chem. Glasses, 2, 12 (1960).Google Scholar
  56. 56.
    F. O. Anderegg, Ind. Eng. Chem. 31, 290 (1939).CrossRefGoogle Scholar
  57. 57.
    J. B. Murgatroyd, J. Soc. Glass Tech. 32, 291T (1948).Google Scholar
  58. 58.
    A. F. Prebus and J. V. Michener, Ind. Eng. Chem. 46, 146 (1954).CrossRefGoogle Scholar
  59. 59.
    W. F. Thomas, Phys. Chem. Glasses 1, 4 (1960).Google Scholar
  60. 60.
    W. H. Otto, J. Am. Ceram. Soc. 38, 122 (1955).CrossRefGoogle Scholar
  61. 61.
    R. T. Brannan, J. Am. Ceram. Soc. 36, 230 (1953).CrossRefGoogle Scholar
  62. 62.
    G. M. Bartenev, Pg. 491 in Physics of Non-Crystalline Solids, J. Prins editor, North Holland Publishing Co., Amsterdam, (1965).Google Scholar
  63. 63.
    C.R. Morelock, private communication to W. B. Hillig (Ref. 32).Google Scholar
  64. 64.
    J. E. Ritter Jr., Glass Ind. 49, 603 (1968).Google Scholar
  65. 65.
    F. M. Ernsberger, Pg. 191 in Research into Glass Vol. 1 PPG Industries, Pittsburgh (1967) (Reprinted from Machine Design, April 1965).Google Scholar
  66. 66.
    F. M. Ernsberger, Phys. Chem. Glasses 10, 240 (1969).Google Scholar
  67. 67.
    J. Cornelissen, H. W. J. H. Meyer, A. M. Kruithof, and H. C. Hamaker, Pg. 489 in Advances in Glass Technology Plenum Press, N.Y. (1962).Google Scholar
  68. 68.
    J. C. Fisher, J. Appl. Phys 19, 1062 (1948).CrossRefGoogle Scholar
  69. 69.
    E. F. Poncelet, Pg. 201 in Fracturing of Metals, American Society for Metals, Cleveland (1948).Google Scholar
  70. 70.
    S. M. Cox, Phys. Chem. Glasses 10, 226 (1969).Google Scholar
  71. 71.
    C. Gurney, Proc. Roy. Soc. A282, 24 (1964).Google Scholar
  72. 72.
    W. C. Levengood, J. Appl. Phys. 30, 378 (1959).CrossRefGoogle Scholar
  73. 73.
    W. C. Levengood and T. S. Vong, J. Appl. Phys. 31, 1104 (1959).Google Scholar
  74. 74.
    W. C. Levengood, J. Appl. Phys. 32, 2525 (1961).CrossRefGoogle Scholar
  75. 75.
    W. C. Levengood, Inter. J. Fracture Mech. 2, 400 (1966).Google Scholar
  76. 76.
    F. M. Ernsberger, J. Am. Ceram. Soc. 52, 404 (1969).CrossRefGoogle Scholar
  77. 77.
    W. C. Levengood, Ibid, page 403.Google Scholar
  78. 78.
    S. M. Wiederhorn and P. R. Townsend, J. Am. Ceram. Soc. 53, 486 (1970).CrossRefGoogle Scholar
  79. 79.
    F. M. Ernsberger, J. Am. Ceram. Soc. 51, 545 (1968).CrossRefGoogle Scholar
  80. 80.
    S. Sakka and J. D. Mackenzie, J. Non-Cryst. Sol. 1, 107 (1969).CrossRefGoogle Scholar
  81. 81.
    S. M. Wiederhorn and L. H. Bolz, J. Am. Ceram. Soc. 53, 543 (1970).CrossRefGoogle Scholar
  82. 82.
    S. M. Wiederhorn, J. Am. Ceram. Soc. 50, 407 (1967).CrossRefGoogle Scholar
  83. 83.
    S. M. Wiederhorn, J. Am. Ceram. Soc. 52, 99 (1969).CrossRefGoogle Scholar
  84. 84.
    P. C. Fletcher and J. J. Tillman, J. Am. Ceram. Soc. 47, 382 (1964).CrossRefGoogle Scholar
  85. 85.
    G. M. Bartenev, J. Tech. Phys. 19, 1423 (1949) (Russian).Google Scholar
  86. 86.
    R. Gardon, Proc. VII Inter. Cong. on Glass, International Glass Commission, Charleroi, Belgium (1965).Google Scholar
  87. 87.
    E. H. Lee, T. G. Rogers and T. C. Woo, J. Am. Ceram. Soc. 48, 480 (1965).CrossRefGoogle Scholar
  88. 88.
    F.F. Vitman, I.A. Boguslavski, and V. P. Pukh, Sov. Phys. Solid State 4, 1582 (1963).Google Scholar
  89. 89.
    I. A. Boguslavski, Glass and Ceramics 21, 562 (1964).CrossRefGoogle Scholar
  90. 90.
    E. A. Porai-Koshits, O. A. Goganov and V. I. Averjanov, pg. 117 in Physics of Non-Crystalline Solids, J. A. Prins, editor, North Holland Publishing Co., Amsterdam (1965).Google Scholar
  91. 91.
    D. A. Krohn and A. R. Cooper, J. Am. Ceram. Soc. 52, 661 (1969).CrossRefGoogle Scholar
  92. 92.
    J. S. Olcott, Science 40, 1189 (1963).CrossRefGoogle Scholar
  93. 93.
    J. S. Olcott, and S.D. Stookey, pg. 400 in Advances in Glass Technology, Plenum press, New York (1962).Google Scholar
  94. 94.
    H. M. Garfinkel, D. L. Rothermal and S. D. Stookey, Ibid, pg. 404.Google Scholar
  95. 95.
    H. P. Hood and S. D. Stookey, U. S. Pat. 2,998,675 (1961).Google Scholar
  96. 96.
    S. S. Kistler, J. Am. Ceram. Soc. 45, 59 (1962).CrossRefGoogle Scholar
  97. 97.
    M. E. Nordberg, E. L. Mochel, H. M. Garfinkel and J. S. Olcott, J. Am. Ceram. Soc. 47, 215 (1964).CrossRefGoogle Scholar
  98. 98.
    R. H. Doremus, J. Phys Chem. 68, 2212 (1964).CrossRefGoogle Scholar
  99. 99.
    R. H. Doremus, pg. 6 in Modern Aspects of the Vitreous State Vol. 2, J. D. Mackenzie, editor, Butterworths, London (1962).Google Scholar
  100. 100.
    C.L. Quackenbush, M. S. Thesis, Alfred U. 1969.Google Scholar
  101. 101.
    S.D. Stookey, pg. 669 in High Strength Materials, V. F. Zackay, editor, John Wiley and Sons, New York (1964).Google Scholar
  102. 102.
    H. M. Garfinkel, Glass Ind. 50, 28 and 74 (1969).Google Scholar
  103. 103.
    J. B. Ward, B. Sugarman, and C. Symmers, Glass Tech. 6, 90 (1965).Google Scholar
  104. 104.
    A. J. Burggraaf, Phys. Chem. Glasses 7, 169 (1966).Google Scholar
  105. 105.
    T. R. Bott and A. J. Barker, Glass Tech. 9, 42 (1968).Google Scholar
  106. 106.
    A. E. R. Westman, pg. 63 in Modern Aspects of the Vitreous State, Vol. 2, J. D. Mackenzie, editor, Butterworths, London (1960).Google Scholar
  107. 107.
    B. T. Kolomiets, Phys. Stat. Solidi 7, 359, 372 (1964).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • William C. LaCourse
    • 1
  1. 1.SUNY College of CeramicsAlfred UniversityAlfredUSA

Personalised recommendations