The Development of Colors in Glass

  • Foster L. Harding
Conference paper


In simplest terms, colors occur in glass because the spectrum of light which is incident upon a piece of glass is altered as it interacts with the glass. Several things may occur when light interacts with glass. Portions of the incident beam will be reflected, absorbed, and scattered. The remainder, if any, will be transmitted through the glass.


Visible Spectrum Silicate Glass Color Center Octahedral Coordination Tetrahedral Coordination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. D. Kingery, Introduction to Ceramics, John Wiley & Sons, New York (1960).Google Scholar
  2. 2.
    T. Bates, “Ligand Field Theory and Absorption Spectra of Transition-Metal Ions in Glasses”, Chapter 5 in Modern Aspects of the Vitreous State, Vol. 2 (ed. by J. D. MacKenzie) Butterworths, Washington, D. C. (1962).Google Scholar
  3. 3.
    F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Interscience Publishers, New York (1962).Google Scholar
  4. 4.
    W. A. Weyl, Coloured Glasses, Society of Glass Technology (1951).Google Scholar
  5. 5.
    C.R. Kurkjian and E. A. Sigety, “Coordination of Fe 3+ in Glass”, Phys. Chem. Glasses 9(3), 73 (1968).Google Scholar
  6. 6.
    W. D. Johnston, “Oxidation-Reduction Equilibria in Molten Na2O · 2 SiO2 Glass”, J. Am. Ceram. Soc. 48, 184 (1965).CrossRefGoogle Scholar
  7. 7.
    F. L. Harding and R. J. Ryder, “Amber Colour in Commercial Silicate Glasses”, Canadian ceramic Soc. Jour., 39, 59–63, (1970).Google Scholar
  8. 8.
    R. W. Douglas and M. S. Zaman, “The Chromophore in Iron-Sulfur Amber Glasses”, Phys. Chem. Glasses 10(4), 125 (1969).Google Scholar
  9. 9.
    K. Karlsson, “Absorption of Iron in Amber Glass”, Glastek. Tidskr. 24(1), 13–19 (1969) (in English).Google Scholar
  10. 10.
    D. Brown and R. W. Douglas, “Carbon-Sulphur Amber Glasses”, Glass Technol. 6, 190–196 (1965).Google Scholar
  11. 11.
    S. M. Budd, V. H. Exelby, and J. J. Kirwan, “The Formation of Gas Bubbles in Glass at High Temperature”, Glass Technol. 3(4), 124 (1962).Google Scholar
  12. 12.
    W. R. Manring, “Comments on Reboil Phenomena in Amber Container Glasses”, presented at the 30th Annual Conference on Glass Problems, No. 21-22, 1969, University of Illinois, Urbana, Illinois.Google Scholar
  13. 13.
    A. E. Pavlish and C. R. Austin, “Selenium-Ruby and other Glasses Colored by Selenium”, J. Am. Ceram. Soc. 30(1), 1 (1947).CrossRefGoogle Scholar
  14. 14.
    H. Rawson, Inorganic Glass — Forming Systems, Academic Press, New York (1967).Google Scholar
  15. 15.
    P. Nath and R. w. Douglas, “Cr3+ — Cr6+ Equilibrium in Binary Alkali Silicate Glasses”, Phys. Chem. Glasses 6(6), 197 (1965).Google Scholar
  16. 16.
    A. Paul and D. Lahiri, “Manganous-Manganic Equilibrium in Alkali Borate Glasses”, J. Am. Ceram. Soc. 49, 565 (1966).CrossRefGoogle Scholar
  17. 17.
    A. P. Herring, R. W. Dean, and J. L. Drobnick, “The Use of Rare-Earth Oxides to Give Color or Visible Fluorescence to Soda-Lime Glasses”, presented at the Am. Ceramic Soc. 70th Annual Meeting, Glass Division, Chicago, Illinois, April 24, 1968. Reprints available from Molybdenum Corporation of America.Google Scholar
  18. 18.
    J. H. Brophy, R. M. Rose, and J. Wulff, The Structure and Properties of Materials, Vol. II, John Wiley & Sons, New York (1964).Google Scholar
  19. 19.
    G. E. Rindone in Luminescence of Inorganic Solids (ed. by P. Goldberg) Academic Press, New York (1966).Google Scholar

Copyright information

© Plenum Press, New York 1972

Authors and Affiliations

  • Foster L. Harding
    • 1
  1. 1.Brockway Glass Company, Inc.BrockwayUSA

Personalised recommendations