The W/Wv Mouse

A Model of Bone Marrow Failure
  • Saul J. Sharkis
  • Wieslaw Wiktor-Jedrzejczak
  • Aftab Ahmed


The hematopoietic tissues of animals and man have the capacity for extensive self-renewal, proliferation, and differentiation. Differentiation patterns of hematopoietic tissue development as outlined most recently in a review by Cline and Golde (1979) are a series of maturational steps resulting from proliferation of a pluripotent stem cell. The pluripotent stem cell, by definition, has the potential for (1) replication to identical daughter cells (which maintain this stem cell pool) and (2) extensive differentiation into committed precursors of various cell lines that make up the hematopoietic tissues (i.e., erythroid, granuloid, megakaryocyte, as well as lymphoid series) (Fig. 1). Recent work has suggested that defective hematopoietic stem cells at either the level of the pluripotent hematopoietic progenitor cell or at the committed precursor stage might result in diseases such as aplastic anemia (Hoffman et al., 1977) and Blackfan-Diamond syndrome (Hoffman et al., 1976) in man. McCulloch et al. (1964) have shown that the stem-cell defect in the anemic W/W v mouse is due to a quantitative reduction in the numbers of spleen colony-forming units (CFU; the assay for pluripotent stem cells) in the bone marrow of the W/W v mouse. In addition, the macrocytic anemia of W/W v mice (characterized by decreased red blood cell counts and hematocrit and increased mean cell volume; Table I) is considered to be an experimental model of hypoplastic anemia in man (Russell and Bernstein, 1966). The W/W v anemic mouse is an F1 mouse that is derived from the mating of two strains (the G57BL/6J mouse carrying the W v allele in the heterozygous state, and the WB/ReJ mouse carrying the W allele in the heterozygous state). Thus, when these mice are bred, F1 mice of four separate genotypes are produced, +/+, W/+, W v/+, and the W/W v anemic mouse. The +/ + mice are hematologically normal. It has been shown that the W/W v anemic mice can accept a bone marrow graft from their +/+ normal littermates and that the success of the bone marrow graft can be easily determined by testing red blood cell values in the anemic recipients (Russell et ai, 1959).


Bone Marrow Major Histocompatibility Complex Bone Marrow Cell Aplastic Anemia Bone Marrow Failure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amare, M., Abdou, N. L., Robinson, M. G., and Abdou, N. I., 1978, Aplastic anemia associated with bone marrow suppressor T-cell hyperactivity: Successful treatment with anti-thymocyte globulin, Am. J. Hem-atol. 5: 25.CrossRefGoogle Scholar
  2. Bach, J.-F., Dardenne, M., Goldstein, A. L., Guha, A., and White, A., 1971, Appearance of T-cell markers in bone marrow rosette forming cells after incubation with thymosin, a thymic hormone, Proc. Natl. Acad. Sci. USA 68: 2734.PubMedCrossRefGoogle Scholar
  3. Byron, J., 1974, Molecular basis for the triggering of hematopoietic stem cells into DNA synthesis, in: Hemopoiesis in Culture (W. Robinson, ed.), pp. 91–101, U.S. Government Printing Office, Washington, D.C.Google Scholar
  4. Cantor, H., and Boyse, E. A., 1975, Functional subclasses of T lymphocytes bearing different Ly antigens. I. The generation of functionally distinct T-cell subclasses in a differentiative process independent of antigen, J. Exp. Med. 141: 1376.PubMedCrossRefGoogle Scholar
  5. Cline, M. J., and Golde, D. W., 1974, Production of colony stimulating factor by human lymphocytes, Nature (London) 248: 703.CrossRefGoogle Scholar
  6. Cline, M. J., and Golde, D. W., 1979, Controlling the production of blood cells, Blood 53: 157.PubMedGoogle Scholar
  7. Frindel, E., and Croizat, H., 1975, The relationship between CFU kinetics and the thymus, Ann. N.Y. Acad, Sci. 249: 468.CrossRefGoogle Scholar
  8. Frindel, E., Leuchers, E., and Davis, A. T. S., 1976, Thymus dependency of bone marrow stem cell proliferation in response to certain antigens, Exp. Hematol. 4: 275.PubMedGoogle Scholar
  9. Goodman, J. W., and Grubbs, C. E., 1970, The relationship of the thymus to erythropoiesis, in: Hematopoietic Cellular Proliferation (F. Stohlman, Jr., ed.), pp. 26–35, Grune & Stratton, New York.Google Scholar
  10. Gregory, C. J., Tepperman, A. S., McCulloch, E. A., and Till, J. E., 1974, Erythropoietic progenitors capable of colony formation in culture response of normal and genetically anemic W/Wv mice to manipulations of the erythron, J. Cell. Physiol. 84: 1.PubMedCrossRefGoogle Scholar
  11. Harrison, D. E., 1976, Avoidance of graft versus host reactions in cured W-anemic mice, Transplantation 22: 47.PubMedCrossRefGoogle Scholar
  12. Harrison, D. E., 1979, Use of genetic anemias as tools for haematological research, in: Clinics in Hematology (L. G. Lajtha, ed.), pp. 239–260, Saunders, London.Google Scholar
  13. Harrison, D. E., and Doubleday, J. W., 1976, Marrow allograft survival in W/Wv anemic mice: Relation to skin graft survival times, Immunogenetics 3: 289.CrossRefGoogle Scholar
  14. Hoffman, R., Zanjani, E. D., Vila, J., Zalusky, R., Lutton, J. P., and Wasserman, L. R., 1976, Diamond Blackfan syndrome: Lymphocyte mediated suppression of erythropoiesis, Science 193: 899.PubMedCrossRefGoogle Scholar
  15. Hoffman, R., Zanjani, E. D., Lutton, J. D., Zalusky, A., and Wasserman, L. R., 1977, Suppression of erythroid colony formation by lymphocytes from patients with aplastic anemia, N. Engl. J. Med. 296: 10.PubMedCrossRefGoogle Scholar
  16. Huber, B., Cantor, H., Shen, F. W., and Boyse, E. A., 1976, Independent differentiative pathways of Ly 1 and Ly 23 subclasses of T cells. Experimental production of mice deprived of selected T-cell subclasses, J. Exp. Med. 144: 1128.PubMedCrossRefGoogle Scholar
  17. Lipton, J. M., Link, N. A., Breard, J., Jackson, P. L., Clarke, B. J., and Nathan, D. G., 1980, Monocytes do not inhibit peripheral blood erythroid burst forming unit colony formation, J. Clin. Invest. 65: 219.PubMedCrossRefGoogle Scholar
  18. McCulloch, E. A., Siminovitch, L., and Till, J. E., 1964, Spleen colony formation in anemic mice of genotype W/Wv, Science 144: 884.CrossRefGoogle Scholar
  19. Murphy, E. D., Harrison, D. E., and Roths, J. B., 1973, Giant granules of beige mice: A quantitative marker for granulocytes in bone marrow transplantation, Transplantation 15: 526.PubMedCrossRefGoogle Scholar
  20. Nathan, D. G., Chess, L., Hillman, D. G., Clarke, B., Breard, J., Merler, E., and Housman, D. E., 1978a, Human erythroid burst-forming unit: T-cell requirement for proliferation in vitro, J. Exp. Med. 147: 324.PubMedCrossRefGoogle Scholar
  21. Nathan, D. G., Clarke, B. J., Hillman, D. G., Alter, B. P., and Housman, D. E., 1978b, Erythroid precursors in congenital hypoplastic (Diamond-Blackfan) anemia, J. Clin. Invest. 61: 489.PubMedCrossRefGoogle Scholar
  22. Naylor, P. H., Sheppard, H., Thurman, G. B., and Goldstein, A. L., 1976, Increase of cyclic GMP induced in murine thymocytes by thymosin fraction 5, Biochem. Biophys. Res. Commun. 73: 843.PubMedCrossRefGoogle Scholar
  23. Parrott, D. M. V., and East, J., 1964, Studies on a fatal wasting syndrome of mice thymectomized at birth, in: The Thymus in Immunobiology Structure and Function and the Role in Disease (R. A. Good and A. E. Gabrielson, eds.), pp. 523–541, Harper & Row, New York.Google Scholar
  24. Resnitzky, P., Zipori, D., and Trainin, N., 1971, Effect of neonatal thymectomy on hemopoietic tissue in mice, Blood 37: 634.PubMedGoogle Scholar
  25. Rinehart, J. J., Zanjani, E. D., Nomdedou, B., Gormus, B. J., and Kaplan, M. E., 1978, Cell-cell interaction in erythropoiesis. Role of human monocytes, J. Clin. Invest. 62: 979.PubMedCrossRefGoogle Scholar
  26. Russell, E. S., 1979, Hereditary anemias of the mouse: A review for geneticists, Adv. Genet. 20: 357.PubMedCrossRefGoogle Scholar
  27. Russell, E. S., and Bernstein, S. E., 1966, Blood and blood formation, in: Biology of the Laboratory Mouse (E. L. Green, ed.), pp. 351–372, McGraw-Hill, New York.Google Scholar
  28. Russell, E. S., Bernstein, S. E., Lawson, F. A., and Smith, L. J., 1959, Long continued function of normal forming tissue transplanted into genetically anemic hosts, J. Natl. Cancer Inst. 23: 557.PubMedGoogle Scholar
  29. Seller, M. J., 1970, Establishment of tolerance in adult anemic mice of the W series treated with anti-lymphocyte serum and allogeneic haemopoietic cells, Clin. Exp. Immunol. 6: 639.PubMedGoogle Scholar
  30. Sharkis, S. J., Ahmed, A., Sensenbrenner, L. L., Wiktor-Jedrzejczak, W., Goldstein, A. L., and Sell, K. W., 1978a, The regulation of hemopoiesis: Effects of thymosin or thymocytes in a diffusion chamber, in: Experimental Hematology Today (S. J. Baum and G. D. Ledney, eds.), pp. 17–22, Springer-Verlag, New York.Google Scholar
  31. Sharkis, S. J., Ahmed, A., Sensenbrenner, L. L., Wiktor-Jedrzejczak, W., and Sell, K. W., 1978b, Thymic regulation of hematopoiesis: Myeloid differentiation in the stem cell defective W/Wv mouse, in: Hematopoietic Cell Differentiation (D. W. Golde, M. S. Cline, D. Metcalf, and C. F. Fox, eds.), pp. 491–498, Academic Press, New York.Google Scholar
  32. Sharkis, S. J., Sensenbrenner, L. L., Ahmed, A., Stuart, R. K., Wiktor-Jedrzejczak, W., and Sell, K. W., 1978c, The effect of high specific activity tritiated thymidine on CFU-s from anti-theta serum sensitive regulatory cell (TSRC) depleted bone marrow transplanted into W/Wv anemic mice, Exp. Hematol. 6(Suppl. 3): 18.Google Scholar
  33. Sharkis, S. J., Wiktor-Jedrzejczak, W., Ahmed, A., Santos, G. W., McKee, A., and Sell, K. W., 1978d, Antitheta sensitive regulatory cell (TSRC) and hematopoiesis: Regulation of differentiation of transplanted stem cells in W/Wv anemic and normal mice, Blood 52: 802.PubMedGoogle Scholar
  34. Sharkis, S. J., Cahill, R., Ahmed, A., Wiktor-Jedrzejczak, W., and Sell, K. W., 1979, Genetic requirements for bone marrow transplantation for stem cell defective W/Wv mice, Transplant. Proc. 11: 511.PubMedGoogle Scholar
  35. Sharkis, S. J., Spivak, J. L., Ahmed, A., Misiti, J., Stuart, R. K., Wiktor-Jedrzejczak, W., Sell, K. W., and Sensenbrenner, L. L., 1980, Regulation of hematopoiesis: Helper and suppressor influences of the thymus, Blood 55: 524.PubMedGoogle Scholar
  36. Singer, J. W., Brown, J. E., James, M. C., Doney, K., Warren, R. P., Storb, R., and Thomas, E. D., 1978, Effects of peripheral blood lymphocytes from patients with aplastic anemia on granulocytic colony growth from HLA-matched and-mismatched marrows: Effect of transfusion sensitization, Blood 52: 37.PubMedGoogle Scholar
  37. Swain, S. L., and Panfili, P. F., 1979, Helper cells activated by allogeneic H-2K or H-2D differences have Ly phenotype distinct from those responsive to I-region differences, J. Immunol. 122: 383.PubMedGoogle Scholar
  38. Torok-Storb, B., Storb, R., Graham, T. C., Prentice, R. L., Weiden, P. L., and Adamson, J. W., 1978, Eryth-ropoiesis in vitro: Effect of normal vs. “transfusion-sensitized” mononuclear cells, Blood 52: 706.PubMedGoogle Scholar
  39. Wiktor-Jedrzejczak, W., Sharkis, S., Ahmed, A., Sell, K. W., and Santos, G. W., 1977, Theta-sensitive cell and erythropoiesis: Identification of a defect in W/Wv anemic mice, Science 196: 313.PubMedCrossRefGoogle Scholar
  40. Wiktor-Jedrzejczak, W., Ahmed, A., Sharkis, S. J., Cahill, R. A., and Sell. K. W., 1979, Ly phenotype and other T-cell antisera sensitivity of an anti-theta sensitive cell that regulates hematopoiesis, in: Experimental Hematology Today (S. J. Baum and G. D. Ledney, eds.), pp. 33–37, Springer-Verlag, New York.Google Scholar
  41. Wiktor-Jedrzejczak, W., Ahmed, A., Szczylik, C. Sharkis, S. J., Sell, K. W., and Siekierzynski, M., 1980, Immune system of the W/Wv anemic mice: Functional studies, Bull. Pol. Acad. Sci., 27(11):895.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Saul J. Sharkis
    • 1
  • Wieslaw Wiktor-Jedrzejczak
    • 2
  • Aftab Ahmed
    • 3
  1. 1.Oncology CenterThe Johns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Laboratory of Radiation ImmunohematologyMilitary School of MedicineWarsawPoland
  3. 3.Department of ImmunologyMerck Institute for Therapeutic ResearchRahwayUSA

Personalised recommendations