Hematopoietic Stem Cell Differentiation and Its Role in Osteopetrosis

Immunologic Implications
  • Wieslaw Wiktor-Jedrzejczak
  • Regina R. Skelly
  • Aftab Ahmed


Osteopetrosis is a mammalian disorder that is a consequence of a universal failure of bone remodeling processes. This disease results in an excessive accumulation of bone because of insufficient bone resorption and reformation (Gruneberg, 1938, 1963). Osteopetrosis is attributed to defective activity of osteoclasts; these cells are the primary cells involved in bone resorption and are now known to be derived from hematopoietic stem cells (Gothlin and Ericsson, 1976; Owen, 1978). The insight into the origin of the osteoclast and the experiments demonstrating that osteopetrosis could be cured by the transplantation of hematopoietic stem cells (Walker, 1975a-c) in some cases, and lymphoid T cells in other cases (Milhaud and Labat, 1978), demand that the relationship between the osteogenic, hematopoietic, and immunologic systems be examined. Such an evaluation, using osteopetrosis as a model, is the objective of this chapter.


Bone Resorption Hematopoietic Stem Cell Spleen Cell Coat Color Stromal Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramson, S., Miller, R. G., and Phillips, R. A., 1977, The identification in adult bone marrow of pluripotent and restricted stem cells of the myeloid and lymphoid systems, J. Exp. Med. 145: 1567.PubMedCrossRefGoogle Scholar
  2. Ascenzi, A., 1976, Physiological relationship and pathological interferences between bone tissue and marrow, in: The Biochemistry and Physiology of Bone (G. H. Bourne, ed.), pp. 403–444, Academic Press, New York.Google Scholar
  3. Ash, P., Loutit, J. F., and Townsend, K. M. S., 1980, Osteoclasts derived from haematopoietic stem cells, Nature (London) 283: 669.CrossRefGoogle Scholar
  4. Ballet, J. J., and Griscelli, C., 1977, Lymphoid cell transplantation in human osteopetrosis, in: Mechanisms of Localized Bone Loss (J. E. Horton, T. M. Tarpley, and W. F. Davis, eds.), pp. 399–415, IRI, Washington, D.C.Google Scholar
  5. Ballet, J. J., Griscelli, C., Coutris, G., Milhaud, G., and Maroteaux, P., 1977, Bone-marrow transplantation in osteopetrosis, Lancet II: 1137.CrossRefGoogle Scholar
  6. Band, C. A., and Auil, E., 1971, Osteocyte differential count in normal human alveolar bone, Acta Anat. 78: 321.CrossRefGoogle Scholar
  7. Barnicot, N. A., 1974, The supravital staining of osteoclasts with neutral red: Their distribution on the parietal bone of normal growing mice and a comparison with the mutants grey lethal and hydrocephalus-3, Proc. R. Soc. London Ser. B 134: 467.CrossRefGoogle Scholar
  8. Bourne, G. H. (ed.), 1976, The Biochemistry and Physiology of Bone, 2nd ed., Vol. 4, Academic Press, New York.Google Scholar
  9. Bradley, T. R., and Metcalf, D., 1966, The growth of mouse bone marrow cells in vitro, Aust. J. Exp. Biol. Med. Sci. 44: 287.PubMedCrossRefGoogle Scholar
  10. Chambers, T. J., and Loutit, J. F., 1979, A functional assessment of macrophages from osteopetrotic mice, J. Pathol. 129: 57.PubMedCrossRefGoogle Scholar
  11. Coccia, P. F., Krivit, W., Cervenka, J., Clawson, C., Kersey, J. H., Kim, T. H., Nesbit, M., Ramsay, N. K. C, Warkentin, P. I., Teitelbaum, S. L., Kahn, A. J., and Brown, D. M., 1980, Successful bone-marrow transplantation for infantile malignant osteopetrosis, N. Engl. J. Med. 302: 701.PubMedCrossRefGoogle Scholar
  12. Cotton, W. R., and Gaines, J. F., 1974, Unerupted dentition secondary to congenital osteopetrosis in the Osborne-Mendel rat, Proc. Soc. Exp. Biol Med. 146: 554.PubMedGoogle Scholar
  13. Dexter, T. M., Allen, T. D., and Lajtha, L. G., 1977, Conditions controlling the proliferation of haemopoietic stem cells in vitro, J. Cell. Physiol. 91: 335.PubMedCrossRefGoogle Scholar
  14. Dicke, M. M., 1967, Mouse News Letter 36: 39.Google Scholar
  15. Friedenstein, A. J., 1976, Precursor cells of mechanocytes, Int. Rev. Cytol. 47: 327.PubMedCrossRefGoogle Scholar
  16. Friedenstein, A. J., Chailakhyan, R. K., Latsinik, N. V., Panasyuk, A. F., and Keilis-Borok, I. V., 1974, Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues: Cloning in vitro and retransplantation in vivo, Transplantation 17: 331.PubMedCrossRefGoogle Scholar
  17. Gothlin, G., and Ericsson, J. L. E., 1976, The osteoclast: Review of ultrastructure, origin, and structure-function relationship, Clin. Orthop. Relat. Res. 120: 201.PubMedGoogle Scholar
  18. Goud, T. J. L. M., and VanFurth, R., 1975, Proliferative characteristics of monoblasts grown in vitro, J. Exp. Med. 142: 1200.PubMedCrossRefGoogle Scholar
  19. Goud, T. J. L. M., Schotte, C., and VanFurth, R., 1975, Identification and characterization of the monoblast in mononuclear phagocyte colonies grown in vitro, J. Exp. Med. 142: 1180.PubMedCrossRefGoogle Scholar
  20. Green, M. C., 1966, Mutant genes and linkages, in: Biology of the Laboratory Mouse (E. L. Green, ed.), 2nd ed., p. 87, McGraw-Hill, New York.Google Scholar
  21. Gruneberg, H., 1938, Some new data on the gray-lethal mouse, J. Genet. 36: 153.CrossRefGoogle Scholar
  22. Gruneberg, H., 1963, The Pathology of Development, pp. 74–93, Blackwell, Oxford.Google Scholar
  23. Harrison, D. E., 1972, Lifesparing ability (in lethally irradiated mice) of W-W mouse marrow with no macroscopic colonies, Radiat. Res. 52: 553.PubMedCrossRefGoogle Scholar
  24. Harrison, D. E., and Astle, C. M., 1976, Population of lymphoid tissues in cured W-anemic mice by donor cells, Transplantation 22: 42.PubMedCrossRefGoogle Scholar
  25. Harrison, D. E., and Cherry, M., 1975, Survival of marrow allografts in W/Wv anemic mice: Effect of disparity at the Ea-2 locus, Immunogenetics 2: 219.CrossRefGoogle Scholar
  26. Hirsch, M. S., 1962, Studies on the response of osteopetrotic bone expiants to parathyroid expiants in vitro, Bull. Johns Hopkins Hosp. 110: 257.PubMedGoogle Scholar
  27. Horton, J. E., Raisz, L. G., Simmons, H. A. Oppenheim, J. J., and Mergenhagen, S. E., 1972, Bone resorbing activity in supernatant fluid from cultured human peripheral blood leukocytes, Science 177: 793.PubMedCrossRefGoogle Scholar
  28. Horton, J. E., Oppenheim, J. J., Mergenhagen, S. E., and Raisz, L. G., 1974, Macrophage-lymphocyte synergy in the production of osteoclast activating factor, J. Immunol. 113: 1278.PubMedGoogle Scholar
  29. Jande, S. S., and Belanger, L. F., 1973, The life cycle of the osteocyte, Clin. Orthop. Relat. Res. 94: 281.PubMedCrossRefGoogle Scholar
  30. Kahn, A. J., Stewart, C. C., and Teitelbaum, S. L., 1978, Contact-mediated bone resorption by human monocytes in vitro, Science 199: 988.PubMedCrossRefGoogle Scholar
  31. Lane, P. W., 1979, Mouse News Letter 60: 59.Google Scholar
  32. Lewis, J. P., O’Grady, L. F., Bernstein, S. E., Russell, E. S., and Trobaugh, F. E., Jr., 1967, Growth and differentiation of transplanted W/Wv marrow, Blood 30: 601.PubMedGoogle Scholar
  33. Lopez, C., Kirkpatrick, D., Sorell, M., O’Reilly, R. J., and Ching, C., 1979, Association between pre-trans-plant natural kill and graft-versus-host disease after stem-cell transplantation, Lancet II: 1103.CrossRefGoogle Scholar
  34. Loutit, J. F., and Nisbet, N. W., 1979, Resorption of bone, Lancet II: 26.CrossRefGoogle Scholar
  35. Loutit, J. F., and Sansom, J. M., 1976, Osteopetrosis of microophthalmic mice: A defect of the hematopoietic stem cell, Calaf. Tissue Res. 20: 251.CrossRefGoogle Scholar
  36. McCulloch, E. A., Siminovitch, L., and Till, J. E., 1964, Spleen-colony formation in anemic mice of genotype W/Wv, Science 144: 844.PubMedCrossRefGoogle Scholar
  37. McCulloch, E. A., Siminovitch, L., Till, J.E., Russell, E. S., and Bernstein, S. E., 1965, The cellular basis of the genetically determined hemopoietic defect in anemic mice of genotype Sl/Sld, Blood 26: 399.PubMedGoogle Scholar
  38. MacVittie, T. L., and Weatherly, T. L., 1977, Characteristics of the in vitro monocyte-macrophage colony-forming cells detected within mouse thymus and lymph nodes, in: Experimental Hematology Today (S. J. Baum and G. D. Ledney, eds.), pp. 147–155, Springer, New York.Google Scholar
  39. Marks, S. C., Jr., 1973, Pathogenesis of osteopetrosis in the ia rat: Reduced bone resorption due to reduced osteoclast function, Am. J. Anat. 138: 165.PubMedCrossRefGoogle Scholar
  40. Marks, S. C., Jr., 1976, Osteopetrosis in the ia rat cured by spleen cells from a normal littermate, Am. J. Anat. 146: 331.PubMedCrossRefGoogle Scholar
  41. Marks, S. C., Jr., 1977, Osteopetrosis in the toothless (tl) rat: Presence of osteoclasts but failure to respond to parathyroid extract or to be cured by infusion of spleen or bone marrow cells from normal littermates, Am. J. Anat. 149: 289.PubMedCrossRefGoogle Scholar
  42. Marks, S. C., Jr., 1978a, Studies of the cellular cure for osteopetrosis by transplanted cells: Specificity of the cell type in ia rats, Am. J. Anat. 151: 131.PubMedCrossRefGoogle Scholar
  43. Marks, S. C., Jr., 1978b, Studies of the mechanism of spleen cell cure for osteopetrosis in ia rats: Appearance of osteoclasts with ruffled borders, Am. J. Anat. 151: 119.PubMedCrossRefGoogle Scholar
  44. Marks, S. C., Jr., and Lane, P. W., 1976, Osteopetrosis, a new recessive skeletal mutation on chromosome 12 of the mouse, J. Hered. 67: 11.PubMedGoogle Scholar
  45. Marks, S. C., Jr., and Schneider, G. B., 1978, Evidence for a relationship between lymphoid cells and osteoclasts: Bone resorption restored in ia (osteopetrotic) rats by lymphocytes, monocytes and macrophages from a normal littermate, Am. J. Anat. 152: 331.PubMedCrossRefGoogle Scholar
  46. Marks, S. C., Jr., and Walker, D. G., 1976, Mammalian osteopetrosis — A model for studying cellular and humoral factors in bone resorption, in: The Biochemistry and Physiology of Bone (G. H. Bourne, ed.), Vol. 4, pp. 227–301, Academic Press, New York.Google Scholar
  47. Metcalf, D., and Moore, M. A. S., 1971, Haemopoietic Cells, North-Holland, Amsterdam.Google Scholar
  48. Milhaud, G., and Labat, M. L., 1978, Thymus and osteopetrosis, Clin. Orthop. Relat. Res. 135: 260.PubMedGoogle Scholar
  49. Milhaud, G., and Labat, M. L., 1979, Osteopetrosis reconsidered as a curable immune disorder, Biomedicine 30: 71.PubMedGoogle Scholar
  50. Milhaud, G., Labat, M. L., Graf, B., and Thillard, M.-J., 1976, Guerison de l’osteopetrose congenitale du rat “op” par greffe de thymus, C. R. Acad. Sci. Ser. D 283: 531.Google Scholar
  51. Milhaud, G., Labat, M. L., Parant, M., Damais, C., and Chedid, L., 1977, Immunological defect and its correction in the osteopetrotic mutant rat, Proc. Natl. Acad. Sci. USA 74: 339.PubMedCrossRefGoogle Scholar
  52. Minkin, C., 1977, Discussion, in: Mechanisms of Localized Bone Loss (J. E. Horton, T. M. Torpley, and W. F. Davis, eds.), pp. 416–417, IRL, Washington, D.C.Google Scholar
  53. Minkin, C., and Pokress, S., 1980, Macrophage function in osteopetrosis: Macrophage chemotaxis in microophthalmic (mi/mi) mice, J. Dent. Res. 59 (special issue A), Abstract No. 263.Google Scholar
  54. Morse, B. S., Giuliani, D., Soremekun, M., DiFino, S., and Giuliani, E. R., 1974, Adaptation of hemopoietic tissue resulting from estrone-induced osteosclerosis in mice, Cell Tissue Kinet. 7: 113.PubMedGoogle Scholar
  55. Mundy, G. R., Altman, A. J., Gondek, M. D., and Bandelin, J. G., 1977, Direct resorption of bone by human monocytes, Science 196: 1109.PubMedCrossRefGoogle Scholar
  56. Mundy, G. R., Varani, J., Orr, W., Gondek, M. D., and Ward, P. A., 1978, Resorbing bone is chemotactic for monocytes, Nature (London) 275: 132.CrossRefGoogle Scholar
  57. Murphy, H. M., 1969, A review of inherited osteopetrosis in the mouse: Man and other animals also considered, Clin. Orthop. Relat. Res. 65: 97.PubMedCrossRefGoogle Scholar
  58. Nisbet, N. W., Menage, J., and Loutit, J. F., 1978, Host-donor cellular interactions in the treatment of experimental osteopetrosis, Nature (London) 271: 464.CrossRefGoogle Scholar
  59. Nisbet, N. W., Menage, J., and Loutit, J. F., 1979, Resolution and relapse of osteopetrosis in mice transplanted with myeloid tissue of variable histocompatibility, Transplantation 28: 285.PubMedCrossRefGoogle Scholar
  60. Olsen, C. E., Wahl, S. M., Wahl, L. M., Sandberg, A. L., and Mergenhagen, S. E., 1977, Immunological defects in osteopetrotic mice, in: Mechanisms of Localized Bone Loss (J. E. Horton, T. M. Tarpley, and W. F. Davis, eds.), pp. 389–398, IRI, Washington, D.C.Google Scholar
  61. Owen, M., 1978, Histogenesis of bone cells, Calcif Tissue Res. 25: 205.PubMedCrossRefGoogle Scholar
  62. Pluznik, D. H., and Sachs, L., 1966, The cloning of normal “mast” cells in tissue culture, J. Cell. Comp. Physiol. 66: 319.CrossRefGoogle Scholar
  63. Raisz, L. G., Simmons, H. A., Gworek, S. C., and Eilon, G., 1977, Studies on congenital osteopetrosis in microophthalmic mice using organ cultures: Impairment of bone resorption in response to physiologic stimulators, J. Exp. Med. 145: 857.PubMedCrossRefGoogle Scholar
  64. Rasmussen, H., and Bordier, P., 1974, The Physiological and Cellular Basis of Metabolic Bone Disease, Williams & Wilkins, Baltimore.Google Scholar
  65. Russell, E. S., and Bernstein, S. E., 1966, Blood and blood formation, in: Biology of the Laboratory Mouse (E. L. Green, ed.), 2nd ed., pp. 351–372, McGraw-Hill, New York.Google Scholar
  66. Russell, E. S., and Bernstein, S. E., 1968, Proof of whole-cell implant in therapy of W-series anemia, Arch. Biochem. Biophys. 125: 594.PubMedCrossRefGoogle Scholar
  67. Russell, R. G. G., Kislig, A. M., Casey, P. A., Fleisch, H., Thornton, J., Schenk, R., and Williams, D. A., 1973, Effect of diphosphonates and calcitonin on the chemistry and quantitative histology of rat bone, Calcif. Tissue Res. 11: 179.PubMedCrossRefGoogle Scholar
  68. Schenk, R., Merz, W. A., Mühlbauer, R., Russell, R. G. G., and Fleisch, H., 1973, Effect of ethane-1-hydroxy-1,1-diphosphonate (EHDP) and dichloromethylene diphosphonate (C12MDP) on the calcification and resorption of cartilage and bone in the tibial epiphysis and metaphysis of rats, Calcif. Tissue Res. 11: 196.PubMedCrossRefGoogle Scholar
  69. Schnider, G. B., 1978, The role of lymphoid cells in bone resorption: Cellular immunological competence in ia rats, Am. J. Anat. 153: 305.CrossRefGoogle Scholar
  70. Seaman, W. E., Gindhart, T. D., Greenspan, J. S., Blackman, M. A., and Talal, N., 1979, Natural killer cells, bone, and the bone marrow: Studies in estrogen-treated mice and in congenitally osteopetrotic (mi/mi) mice, J. Immunol. 122: 2541.PubMedGoogle Scholar
  71. Simmons, D. J., 1963, Cellular changes in the bones of mice as studied with tritiated thymidine and the effects of estrogen, Clin. Orthop. Relat. Res. 26: 176.PubMedGoogle Scholar
  72. Skelly, R., Wiktor-Jedrzejczak, W., Ahmed, A., 1981, Immune response in osteopetrotic mice of genotype op/ op, submitted for publication.Google Scholar
  73. Tavassoli, M., 1975, Studies on hemopoietic microenvironments, Exp. Hematol. 3: 213.PubMedGoogle Scholar
  74. Till, J. E., and McCulloch, E. A., 1961, A direct measurement of the radiation sensitivity of normal mouse bone marrow cells, Radiat. Res. 14: 213.PubMedCrossRefGoogle Scholar
  75. VanFurth, R., and Cohn, Z. A., 1968, The origin and kinetics of mononuclear phagocytes, J. Exp. Med. 128: 415.PubMedCrossRefGoogle Scholar
  76. VanFurth, R., Goud, T. J. L. M., and VanWaarde, D., 1978, Current studies on the proliferation of cells in the mononuclear phagocyte system, in: Experimental Hematology Today (G. D. Ledney, ed.), pp. 17–22, Springer, New York.Google Scholar
  77. Volkman, A., and Gowans, J. L., 1965, The origin of macrophages from bone marrow in the rat, Br. J. Exp. Pathol. 46: 62.PubMedGoogle Scholar
  78. Walker, D. G., 1973a, Osteopetrosis cured by temporary parabiosis, Science 180: 875.PubMedCrossRefGoogle Scholar
  79. Walker, D. G., 1973b, Experimental osteopetrosis, Clin. Orthop. Relat. Res. 97: 158.PubMedCrossRefGoogle Scholar
  80. Walker, D. G., 1975a, Bone resorption restored in osteopetroic mice by transplants of normal bone marrow and spleen cells, Science 190: 784.PubMedCrossRefGoogle Scholar
  81. Walker, D. G., 1975b, Spleen cells transmit osteopetrosis in mice, Science 190: 785.PubMedCrossRefGoogle Scholar
  82. Walker, D. G., 1975c, Control of bone resorption by hematopoietic tissue: The induction and reversal of congenital osteopetrosis in mice through use of bone marrow and splenic transplants, J. Exp. Med. 142: 651.PubMedCrossRefGoogle Scholar
  83. Wiktor-Jedrzejczak, W., Sharkis, S. J., Ahmed, A., Sell, K. W., and Santos, G. W., 1977, Theta-sensitive cell and erythropoiesis: Identification of a defect in W/Wv anemic mice, Science 196: 313.PubMedCrossRefGoogle Scholar
  84. Wiktor-Jedrzejczak, W., Ahmed, A., and Szczylik, C., 1981a, Immune response in osteopetrotic mice of genotype gl/gl, submitted for publication.Google Scholar
  85. Wiktor-Jedrzejczak, W., Ahmed, A., Skelly, R., and Szczylik, C., 1981b, Possible mechanism for congenital disease in osteopetrotic op/op mice, submitted for publication.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Wieslaw Wiktor-Jedrzejczak
    • 1
  • Regina R. Skelly
    • 2
  • Aftab Ahmed
    • 3
  1. 1.Laboratory of Radiation ImmunohematologyMilitary School of MedicineWarsawPoland
  2. 2.Laboratory of Vision ResearchNational Eye InstituteBethesdaUSA
  3. 3.Department of ImmunologyMerck Institute for Therapeutic ResearchRahwayUSA

Personalised recommendations