Advertisement

Inherent Macrophage Defects in Mice

  • Stefanie N. Vogel
  • Anita Corman Weinblatt
  • David L. Rosenstreich

Abstract

Macrophages represent a highly diverse population of “phagocytic monocytes,” capable of effecting a number of important biological functions. The ubiquitous nature of macrophages as a network of circulating and fixed scavengers within the tissues, combined with their complex phagocytic and detoxifying abilities, subserve their role as the primary host surveillance system. One major function of macrophages is to protect the host from harmful infectious agents, particularly in the early phases of infection, prior to the establishment of a specific immune response. To this end, highly differentiated or “activated” macrophages (Mackaness, 1969) are capable of killing intracellular parasites and tumor cells. In addition to the ability to deal directly with invading microorganisms, the macrophage has been shown to be the source of a number of “monokines” (substances synthesized by macrophages) such as lymphocyte-activating factor, prostaglandins, and certain complement components, each of which modulates the immune response. Moreover, macrophages have clearly been implicated as an essential accessory cell in the establishment of antigen-specific immune responses, and in some cases may act to suppress both humoral and cellular immune functions.

Keywords

Spleen Cell Bacillus Calmette Guerin Mixed Lymphocyte Reaction Hairless Mouse Beige Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelman, N. E., Hammond, M. E., Cohen, S., and Dvorak, H. F., 1979, Lymphokines as inflammatory mediators, in: Biology of the Lymphokines (S. Cohen, E. Pick, and J. J. Oppenheim, eds.), pp. 13–58, Academic Press, New York.Google Scholar
  2. Altman, P. L., and Katz, D. D. (eds.), 1979, in: Inbred and Genetically Defined Strains of Laboratory Animals, Part I, Mouse and Rat, p. 38, Fed. Am. Soc. Exp. Biol., Bethesda, Md.Google Scholar
  3. Anderson, G. W., and Osterman, J. V., 1980, Host defenses in experimental rickettsialpox: Genetics of natural resistance to infection, Infect. Immun. 28: 132.PubMedGoogle Scholar
  4. Bennett, J. M., Blume, R. S., and Wolff, S. M., 1969, Characterization and significance of abnormal leukocyte granules in the beige mouse: A possible homologue for Chediak-Higashi Aleutian trait, J. Lab. Clin. Med. 73: 235.PubMedGoogle Scholar
  5. Bianco, C., and Edelson, P. J., 1977, Macrophage activation in C3H/HeJ mice, Fed. Proc. Fed. Am. Soc. Exp. Biol. 36: 1263.Google Scholar
  6. Boraschi, D., and Meltzer, M. S., 1979a, Macrophage activation for tumor cytotoxicity: Genetic variation in macrophage tumoricidal capacity among mouse strains, Cell. Immunol. 45: 188.PubMedGoogle Scholar
  7. Boraschi, D., and Meltzer, M. S., 1979b, Defective tumoricidal capacity of macrophages from A/J mice. I. Characterization of the macrophage cytotoxic defect after in vivo and in vitro activation stimuli, J. Immunol. 122: 1587.PubMedGoogle Scholar
  8. Boraschi, D., and Meltzer, M. S., 1979c, Defective tumoricidal capacity of macrophages from A/J mice. II. Comparison of the macrophage cytotoxic defect of A/J mice with that of lipid A-unresponsive C3H/HeJ mice, J. Immunol. 122: 1592.PubMedGoogle Scholar
  9. Boraschi, D., and Meltzer, M. S., 1980a, Defective tumoricidal capacity of macrophages from A/J mice. III. Genetic analysis of the macrophage defect, J. Immunol., 124: 1050.PubMedGoogle Scholar
  10. Boraschi, D., and Meltzer, M. S., 1980b, Defective tumoricidal capacity of macrophages from P/J mice: Characterization of the macrophage cytotoxic defect after in vivo and in vitro activation stimuli, J. Immunol. 125: 771.PubMedGoogle Scholar
  11. Boraschi, D., and Meltzer, M. S., 1980c, Defective tumoricidal capacity of macrophages from P/J mice: Tumoricidal defect involves abnormalities in lymphokine-derived activation stimuli and in mononuclear phagocyte responsiveness, J. Immunol. 125: 777.PubMedGoogle Scholar
  12. Bradley, D. J., Taylor, B. A., Blackwell, J., Evans, E. P., and Freeman, J., 1979, Regulation of Leishmania populations within the host. III. Mapping of the locus controlling susceptibility to visceral leishmaniasis in the mouse, Clin. Exp. Immunol. 37: 7.PubMedGoogle Scholar
  13. Buckingham, R. B., and Castor, W. C., 1972, The effect of bacterial products on synovial fibroblast function: Hypermetabolic changes induced by endotoxin, J. Clin. Invest. 51: 1186.PubMedGoogle Scholar
  14. Chase, H. B., 1959, Mouse News Letter 21: 21.Google Scholar
  15. Chase, H. B., 1965, Mouse News Letter 33: 178.Google Scholar
  16. Chedid, L., Parant, M., Damais, C., Parant, F., Juy, D., and Galelli, A., 1976, Failure of endotoxin to increase nonspecific resistance to infection of lipopolysaccharide low-responder mice, Infect. Immun. 13: 722.PubMedGoogle Scholar
  17. Cheers, C., and McKenzie, I. F. C., 1978, Resistance and susceptibility of mice to bacterial infection: Genetics of listeriosis, Infect. Immun. 19: 755.PubMedGoogle Scholar
  18. Cohn, Z. A., 1978, The activation of mononuclear phagocytes: Fact, fancy, and future, J. Immunol. 121: 813.PubMedGoogle Scholar
  19. Dickie, M. M., Southard, J. L., and Farnsworth, R. T., 1969, Two unusual mutations in the mouse, in: Jackson Laboratory 40th Annual Report, p. 77, Bar Harbor, Maine.Google Scholar
  20. Diwan, B. A., and Meier, H., 1976, Colo-rectal tumors in inbred mice treated with 1,2 dimethyl-hydrazine, Proc. Am. Assoc. Cancer Res. 17: 106.Google Scholar
  21. Doe, W. F., and Henson, P. M., 1979, Macrophage stimulation by bacterial lipopolysaccharides. III. Selective unresponsiveness of C3H/HeJ macrophages to the lipid A differentiation signal, J. Immunol. 123: 2304.PubMedGoogle Scholar
  22. Elin, R. J., Edelin, J. B., and Wolff, S. M., 1974, Infection and immunoglobulin concentrations in Chediak-Higashi mice, Infect. Immun. 10: 88.PubMedGoogle Scholar
  23. Essner, E., and Haimes, H., 1977, Ultrastructural study of GERL in beige mouse alveolar macrophages, J. Cell Biol. 75: 381.PubMedGoogle Scholar
  24. Forni, L., and Coutinho, A., 1978, An antiserum which recognizes lipopolysaccharide-reactive B cells in the mouse, Eur. J. Immunol. 8: 56.PubMedGoogle Scholar
  25. Gallin, J., Bujak, J. S., Patten, E., and Wolff, S., 1974, Granulocyte function in the Chediak-Higashi syndrome of mice, Blood 43: 201.PubMedGoogle Scholar
  26. Gallin, J. I., Elin, R. J, Hubert, R. T, Fauci, A. S., Kaliner, M. A, and Wolff, S. M, 1979, Efficacy of ascorbic acid in Chediak-Higashi syndrome (CHS): Studies in humans and mice, Blood 53: 226.PubMedGoogle Scholar
  27. Glode, L. M., and Rosenstreich, D. L., 1976, Genetic control of B cell activation by bacterial lipopolysaccharide is mediated by multiple distinct genes or alleles, J. Immunol. 117: 2061.PubMedGoogle Scholar
  28. Glode, L. M., Scher, I., Osborne, B., and Rosenstreich, D. L., 1976, Cellular mechanism of endotoxin unresponsiveness in C3H/HeJ mice, J. Immunol. 116: 454.PubMedGoogle Scholar
  29. Glode, L. M., Jacques, A., Mergenhagen, S. E., and Rosenstreich, D. L., 1977, Resistance of macrophages from C3H/HeJ mice to the in vitro cytotoxic effects of endotoxin, J. Immunol. 119: 162.PubMedGoogle Scholar
  30. Green, M. C., and Schultz, L. D., 1975, Motheaten, an immunodeficient mutant of the mouse. I. Genetics and pathology, J. Hered. 66: 250.PubMedGoogle Scholar
  31. Groves, M. G., and Osterman, J. V., 1978, Host defense in experimental scrub typhus: Genetics of natural resistance to infection, Infect. Immun. 19: 583.PubMedGoogle Scholar
  32. Groves, M. G., Rosenstreich, D. L., Taylor, B. A., and Osterman, J. V., 1980, Host defenses in experimental scrub typhus: Mapping the gene that controls natural resistance in mice, J. Immunol. 125: 1395.PubMedGoogle Scholar
  33. Gürtler, L. G., and Rank, W. R., 1976, Genetic differences between endotoxin-sensitive and resistant C3H mice. Intraperitoneal cell response to lipopolysaccharide and prostaglandins, Z. Immunitaetsforsch. 151: 420.Google Scholar
  34. Juy, D., and Chedid, L., 1975, Comparison between macrophage activation and enhancement of non-specific resistance to tumors by mycobacterial immunoadjuvants, Proc. Natl. Acad. Sci. USA 72: 4105.PubMedGoogle Scholar
  35. Kelley, E. M., 1957, Mouse News Letter 16: 36.Google Scholar
  36. Kimball, H. R., Melmon, K. L., and Wolff, S. M., 1972, Endotoxin-induced kinin production in man, Proc. Soc. Exp. Biol. Med. 139: 1078.PubMedGoogle Scholar
  37. Kirchner, H., Hirt, H. M., Rosenstreich, D. L., and Mergenhagen, S. E., 1978, Resistance of C3H/HeJ mice to lethal challenge with herpes simplex virus, Proc. Soc. Exp. Biol. Med. 157: 29.PubMedGoogle Scholar
  38. Koenig, S., Hoffman, M. K., and Thomas, L., 1977, Induction of phenotypic lymphocyte differentiation in LPS unresponsive mice by an LPS-induced serum factor and by lipid A-associated protein, J. Immunol. 118: 1910.PubMedGoogle Scholar
  39. Lamensans, A., Chedid, L., Lederer, E., Rosselet, J. P., Ludwig, B., Berger, F. M., Gustafson, R. H., and Spencer, H. J., 1975, Enhancement of immunity against murine syngeneic tumors by a fraction extracted from nonpathogenic mycobacteria, Proc. Natl. Acad. Sci. USA 72: 3656.PubMedGoogle Scholar
  40. Lane, P. W., 1962, Mouse News Letter 26: 35.Google Scholar
  41. Lane, P. W., and Murphy, E. D., 1972, Susceptibility to spontaneous pneumonitis in an inbred strain of beige and satin mice, Genetics 72: 451.PubMedGoogle Scholar
  42. Lohmann-Matthes, M.-L., Domzig, W., and Roder, J., 1979, Promonocytes have the functional characteristics of natural killer cells, J. Immunol. 123: 1883.PubMedGoogle Scholar
  43. Lopez, C., 1975, Genetics of natural resistance to herpes virus infections in mice, Nature (London) 258: 152.Google Scholar
  44. Ly, I. A., and Mishell, R. I., 1974, Separation of mouse spleen cells by passage through columns of Sephadex G-10, J. Immunol. Methods 5: 239.PubMedGoogle Scholar
  45. McAdam, K. P. W. J., and Ryan, J. L., 1978, C57BL/10CR mice: Nonresponders to activation by the lipid A moiety of bacterial lipopolysaccharides, J. Immunol. 120: 249.PubMedGoogle Scholar
  46. Mackaness, G. B., 1969, The influence of immunologically committed lymphoid cells on macrophage activity in vivo, J. Exp. Med. 129: 973.PubMedGoogle Scholar
  47. Mackaness, G. B., 1972, Mechanisms of macrophage activation, in: Infectious Agents and Host Reactions (S. Mudd, ed.), p. 62, Saunders, Philadelphia.Google Scholar
  48. MacVittie, T. J., and Weinberg, J. R., 1980, Murine macrophage colony-forming cells (MCFC). Their response to endotoxin in C3Heb/FeJ and C3H/HeJ mice, in: Genetic Control of Host Resistance to Infection and Malignancy (E. Skamene, ed.), pp. 511–518, Academic Press, New York.Google Scholar
  49. Minkin, C., and Pokress, S., 1980, Macrophage function in osteopetrosis: Macrophage chemotaxis in microph-thalmic (mi/mi) mice, J. Dental Res. 59 (Special Issue A), Abstract 263.Google Scholar
  50. Möeller, G. R., Terry, L., and Snyderman, R., 1978, The inflammatory response and resistance to endotoxin in mice, J. Immunol. 120: 116.PubMedGoogle Scholar
  51. Moore, R. N., Goodrum, K. J., and Berry, L. J., 1976, Mediation of an endotoxic effect by macrophages, J. Reticuloendothelial Soc. 19: 187.Google Scholar
  52. Morrison, D. C., and Cochrane, C. G., 1974, Direct evidence for Hageman factor (factor XII) activation by bacterial lipopolysaccharides (endotoxins), J. Exp. Med. 140: 797.PubMedGoogle Scholar
  53. Morrison, D. C., and Kline, L. F., 1977, Activation of the classical and properdin pathways of complement by bacterial lipopolysaccharides (LPS), J. Immunol. 118: 362.PubMedGoogle Scholar
  54. Morrison, W. I., Roelants, G. E., Mayor-Withey, K. S., and Murray, M., 1978, Susceptibility of inbred strains of mice to Trypanosoma congolense: Correlation with changes in spleen lymphocyte populations, Clin. Exp. Immunol. 32: 25.PubMedGoogle Scholar
  55. Morrissey, P. J., Parkinson, D. R., Schwartz, R. S., and Waksal, S. D., 1980, Immunologic abnormalities in HRS/J mice. I. Specific deficit in T lymphocyte helper function in a mutant mouse, J. Immunol. 125: 1558.PubMedGoogle Scholar
  56. Nichols, B. A., and Bainton, D. F., 1975, Ultrastructure and cytochemistry of mononuclear phagocytes, in: Mononuclear Phagocytes in Immunity, Infection, and Pathology (R. Van Furth, ed.), pp. 17–56, Black-well, Oxford.Google Scholar
  57. O’Brien, A. D., Scher, I., and Formal, S., 1979a, Effects of silica on the innate resistance of inbred mice to Salmonella typhimurium infection, Infect. Immun. 25: 513.PubMedGoogle Scholar
  58. O’Brien, A. D., Scher, I., MacDermott, R., and Formal, S. B., 1979b, Susceptibility of CBA/N mice to infection with Salmonella typhimurium: Influence of the X-linked gene controlling B lymphocyte function, J. Immunol. 123: 720.PubMedGoogle Scholar
  59. O’Brien, A. D., Rosenstreich, D. L., Scher, I., Campbell, G. H., MacDermott, R. P., and Formal, S. B., 1980, Genetic control of susceptibility to Salmonella typhimurium in mice: Role of the LPS gene, J. Immunol. 124: 20.PubMedGoogle Scholar
  60. Oliver, C., and Essner, E., 1973, Distribution of anomalous lysosomes in the beige mouse: A homologue of Chediak-Higashi syndrome, J. Histochem. Cytochem. 21: 218.PubMedGoogle Scholar
  61. Oliver, C., and Essner, E., 1975, Formation of anomalous lysosomes in monocytes, neutrophils, and eosinophils from bone marrow of mice with Chediak-Higashi syndrome, Lab. Invest. 32: 17.PubMedGoogle Scholar
  62. Oppenheim, J. J., Mizel, S. B., and Meltzer, M. S., 1979, Biological effects of lymphocyte and Mø-derived mitogenic “amplification” factors, in: Biology of the Lymphokines (S. Cohen, E. Pick, and J. J. Oppenheim, eds.), pp. 291–323, Academic Press, New York.Google Scholar
  63. Pabst, M. J., and Johnston, R. B., 1980, Increased production of superoxide anion by macrophages exposed in vitro to muramyl dipeptide or lipopolysaccharide, J. Exp. Med. 151: 101.PubMedGoogle Scholar
  64. Peavy, D. L., Baughn, R. E., and Musher, D. M., 1978, Strain-dependent cytotoxic effects of endotoxin for mouse peritoneal macrophages, Infect. Immun. 21: 310.PubMedGoogle Scholar
  65. Plant, J., and Glynn, A. A., 1979, Locating Salmonella resistance gene on mouse chromosome 1, Clin. Exp. Immunol. 37: 1.PubMedGoogle Scholar
  66. Reske-Kunz, A. B., Scheid, M. P., and Boyse, E. A., 1979, Disproportion in T-cell subpopulations in immu-nodeficient mutant hr/hr mice, J. Exp. Med. 149: 228.PubMedGoogle Scholar
  67. Roder, J., and Duwe, A., 1979, The beige mutation in the mouse selectively impairs natural killer cell function, Nature (London) 278: 451.Google Scholar
  68. Roder, J. C., Lohmann-Matthes, M.-L., Domzig, W., Kiessling, R., and Haller, O., 1979a, A functional comparison of tumor cell killing by activated macrophages and natural killer cells, Eur. J. Immunol. 9: 283.PubMedGoogle Scholar
  69. Roder, J. C., Lohmann-Matthes, M.-L., Domzig, W., and Wigzell, H., 1979b, The beige mutation in the mouse. II. Selectivity of the natural killer (NK) cell defect, J. Immunol. 123: 2174.PubMedGoogle Scholar
  70. Rosenstreich, D. L., 1981, The macrophage, in: Cell Functions in Immunity and Inflammation (J. Oppenheim, D. Rosenstreich, and M Potter, eds.), Elsevier-North Holland, New York, in press.Google Scholar
  71. Rosenstreich, D. L., and Vogel, S. N., 1980, The central role of macrophages in endotoxin reactions, in: Microbiology 1980 (D. Schlessinger, ed.), pp. 11–15, Am. Soc. Microbiol., Washington, D.C.Google Scholar
  72. Rosenstreich, D. L., Glode, L. M., Wahl, L. M., Sandberg, A. L., and Mergenhagen, S. E., 1977, Analysis of the cellular defects of endotoxin unresponsive C3H/HeJ mice, in: Microbiology 1977 (D. Schlessinger, ed.), p. 314, Am. Soc. Microbiol., Washington, D.C.Google Scholar
  73. Rosenstreich, D. L., Vogel, S. N., Jaques, A., Wahl, L. M., Scher, I., and Mergenhagen, S. E., 1978a, Differential endotoxin sensitivity of lymphocytes and macrophages from mice with an X-linked defect in B cell maturation, J. Immunol. 121: 685.PubMedGoogle Scholar
  74. Rosenstreich, D. L., Vogel, S. N., Jaques, A. R., Wahl, L. M., and Oppenheim, J. J., 1978b, Macrophage sensitivity to endotoxin: Genetic control by a single codominant gene, J. Immunol. 121: 1664.PubMedGoogle Scholar
  75. Ruco, L. P., and Meltzer, M. S., 1978a, Defective tumoricidal capacity of macrophages from C3H/HeJ mice, J. Immunol. 120: 329.PubMedGoogle Scholar
  76. Ruco, L. P., and Meltzer, M. S., 1978b, Macrophage activation for tumor cytotoxicity: Tumoricidal activity by macrophages from C3H/HeJ mice requires at least two signals, Cell. Immunol. 41: 35.PubMedGoogle Scholar
  77. Ruco, L. P., Meltzer, M. S., and Rosenstreich, D. L., 1978, Macrophage activation for tumor cytotoxicity: Control by macrophage tumoricidal capacity by the LPS gene, J. Immunol. 121: 543.PubMedGoogle Scholar
  78. Ryan, J. L., and McAdam, K. P. W. J., 1977, Genetic nonresponsiveness of murine fibroblasts to bacterial endotoxin, Nature (London) 269: 153.Google Scholar
  79. Ryan, J. L., Glode, L. M., and Rosenstreich, D. L., 1979, Lack of responsiveness of C3H/HeJ macrophages to lipopolysaccharide: The cellular basis of LPS stimulated metabolism, J. Immunol. 122: 932.PubMedGoogle Scholar
  80. Scher, I., Sharrow, S. O., and Paul, W. E., 1976, X-linked B-lymphocyte defect in CBA/N mice. III. Abnormal development of B-lymphocyte populations defined by their density of surface immunoglobulin, J. Exp. Med. 144: 507.PubMedGoogle Scholar
  81. Selinger, M. J., McAdams, K. P. W. J., Kaplan, M. M., Sope, J. D., Vogel, S. N., and Rosenstreich, D. L., 1980, Monokine-induced synthesis of serum amyloid A by hepatocytes, Nature (London) 285: 498.Google Scholar
  82. Sidman, C. L., Schultz, L. D., and Unanue, E. R., 1978a, The mouse mutant “motheaten.” I. Development of lymphocyte populations, J. Immunol. 121: 2392.PubMedGoogle Scholar
  83. Sidman, C. L., Schultz, L. D., and Unanue, E. R., 1978b, The mouse mutant “motheaten.” III. Functional studies of the immune system, J. Immunol. 121: 2399.PubMedGoogle Scholar
  84. Sipe, J. D., Vogel, S. N., Ryan, J. L., McAdam, K. P. W. J., and Rosenstreich, D. L., 1979, Detection of a mediator derived from endotoxin stimulated macrophages that induces the acute phase SAA response in mice, J. Exp. Med. 150: 597.PubMedGoogle Scholar
  85. Skamene, E., and Meltzer, M. S., 1979, Resistance of C3H/HeJ mice to infection with Listeria monocytogenes, Fed. Proc. Fed. Am. Soc. Exp. Biol. 38: 1220 (Abstract 5253).Google Scholar
  86. Skidmore, B. J., Chiller, J. M., Weigle, W. O., Riblet, R., and Watson, J., 1976, Immunologic properties of bacterial lipopolysaccharide (LPS). III. Genetic linkage between the in vitro mitogenic and in vivo adjuvant properties of LPS, J. Exp. Med. 143: 143.PubMedGoogle Scholar
  87. Snell, G. D., 1931, Inheritance in the house mouse, the linkage relations of short ear, hairless, and naked, Genetics 16: 43.Google Scholar
  88. Snippe, H., Johannesen, L., Lizzio, E., and Merchant, B., 1980, Variable expression of delayed hypersensitivity in different mouse strains using dimethyl dioctadecyl ammonium bromide as an adjuvant, Immunology 39: 399.PubMedGoogle Scholar
  89. Snyderman, R., and Verghese, M. W., 1980, Genetic control of leukocyte responses to endotoxic lipopolysac-charides in mice, in: Microbiology 1980 (D. Schlessinger, ed.), pp. 25–29, Am. Soc. Microbiol., Washington, D.C.Google Scholar
  90. Snyderman, R., Phillips, J. E., and Mergenhagen, S. E., 1971, Biological activity of complement in vivo. Role of C5 in the accumulation of polymorphonuclear leukocytes in inflammatory exudates, J. Exp. Med. 134: 1131.PubMedGoogle Scholar
  91. Sultzer, B., 1969, Genetic factors in leukocyte responses to endotoxin: Further studies in mice, J. Immunol. 103: 32.PubMedGoogle Scholar
  92. Sultzer, B. M., 1972, Genetic control of host responses to endotoxin, Infect. Immun. 5: 107.PubMedGoogle Scholar
  93. Sultzer, B. M., and Goodman, G. W., 1977, Characteristics of endotoxin-resistant low responder mice, in: Microbiology 1977 (D. Schlessinger, ed.), p. 304, Am. Soc. Microbiol., Washington, D.C.Google Scholar
  94. Swain, S. L., and Panfili, P. R., 1979, Helper cells activated by allogeneic H-2K or H-2D differences have an Ly phenotype distinct from those responsive to I region differences, J. Immunol. 122: 383.PubMedGoogle Scholar
  95. Tagliabue, A., McCoy, J. L., and Herberman, R. B., 1978, Refractoriness to migration inhibitory factor of macrophages of LPS nonresponder mouse strains, J. Immunol. 121: 1223.PubMedGoogle Scholar
  96. Tagliabue, A., Herberman, R. B., and McCoy, J. L., 1979, Variations among mouse strains in responsiveness to migration inhibitory factor, Cell. Immunol. 45: 464.PubMedGoogle Scholar
  97. Vassalli, J. D., Granelli-Piperno, A., Griscelli, C., and Reich, E., 1978, Specific protease deficiency in polymorphonuclear leukocytes of Chediak-Higashi syndrome and beige mice, J. Exp. Med. 147: 1285.PubMedGoogle Scholar
  98. Vogel, S. N., and Rosenstreich, D., 1979, Defective Fc receptor-mediated phagocytosis in C3H/HeJ macrophages. I. Correction by lymphokine-induced stimulation, J. Immunol. 123: 2842.PubMedGoogle Scholar
  99. Vogel, S. N., Hansen, C. T., and Rosenstreich, D. L., 1979a, Characterization of a congenitally LPS-resistant, athymic mouse strain, J. Immunol. 122: 619.PubMedGoogle Scholar
  100. Vogel, S. N., Marshall, S. T., and Rosenstreich, D. L., 1979b, Analysis of the effects of lipopolysaccharide on macrophages: Differential phagocytic responses of C3H/HeN and C3H/HeJ macrophages in vitro, Infect. Immun. 25: 328.PubMedGoogle Scholar
  101. Vogel, S. N., Moore, R. N., Sipe, J. D., and Rosenstreich, D. L., 1980, BCG-induced enhancement of endotoxin sensitivity in C3H/HeJ mice. I. In vivo studies, J. Immunol. 124: 2004.PubMedGoogle Scholar
  102. Wahl, L. M., Rosenstreich, D. L., Glode, L. M., Sandberg, A. L., and Mergenhagen, S. E., 1979, Defective prostaglandin synthesis by C3H/HeJ mouse macrophages stimulated with endotoxin preparations, Infect. Immun. 23: 8.PubMedGoogle Scholar
  103. Watson, J., and Riblet, R., 1974, Genetic control of responses to bacterial lipopolysaccharides in mice. I. Evidence for a single gene that influences mitogenic and immunogenic responses to lipopolysaccharide, J. Exp. Med. 140: 1147.PubMedGoogle Scholar
  104. Watson, J., Kelly, K., Largen, M., and Taylor, B. A., 1978, The genetic mapping of a defective LPS response gene in C3H/HeJ mice, J. Immunol. 120: 422.PubMedGoogle Scholar
  105. Watson, J., Kelly, K., and Whitlock, C., 1980, Genetic control of endotoxin sensitivity, in: Microbiology 1980 (D. Schlessinger, ed.), Am. Soc. Microbiol., Washington, D.C., in press.Google Scholar
  106. Weinberg, J. B., Chapman, H. A., and Hibbs, J. B., 1978, Characterization of the effects of endotoxin on macrophage tumor cell killing, J. Immunol. 121: 72.PubMedGoogle Scholar
  107. Weinblatt, A. C., Vogel, S. N., and Rosenstreich, D. L., 1980, Depletion of macrophages by nylon or rayon wool: Preparation of purified T lymphocytes, in: Manual of Macrophage Methodology: Collection, Characterization and Function (H. B Herscowitz, H. T. Holden, J. A. Bellanti, and A Ghaffar, eds.), pp. 119–126, Dekker, New York.Google Scholar
  108. Wettstein, P. J., Bailey, D. W., Mobraaten, L., Klein, J., and Frelinger, J. A., 1978, T-lymphocyte response to H-2 mutants. I. Proliferation is dependent on Ly 1+ 2+ cells, J. Exp. Med. 147: 1395.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Stefanie N. Vogel
    • 1
  • Anita Corman Weinblatt
    • 1
  • David L. Rosenstreich
    • 2
  1. 1.Laboratory of Microbiology and ImmunologyNational Institute of Dental Reserach, National Institutes of HealthBethesdaUSA
  2. 2.Department of MicrobiologyAlbert Einstein College of MedicineBronxUSA

Personalised recommendations