Protein Energy Converters

  • K. Laki
  • J. Ladik
Part of the Nato Advanced Study Institutes Series book series (volume 9)


On the basis of experimental evidence, it seems plausible to assume that actin, the main constituent of the thin filaments in muscle, analogously to the coupling factors of mitochondria and chloroplasts, serves as an energy transformer. An approximate stereostructure of actin has been built up on the basis of its known amino acid sequence and the statistical rules of Chou and Fassman. Using analogies to other nucleotide binding proteins, the probable ATP binding site of actin has been pointed out. In the neighborhood of this site, the polypeptide chain is in random coil allowing many different conformations with slightly different energies. Thus this part of the actin molecule could store and release energy via conformational changes. To treat theoretically the conformational changes of a polypeptide chain, a new quantum chemical method for the calculation of the interactions between several molecules is outlined.


Coupling Factor Thin Filament Adenyl Kinase Thick Filament Energy Converter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    A. V. Hill, Science 131, 897 (1960).ADSCrossRefGoogle Scholar
  2. (2).
    L. Margulis in “Origin of eukaryotic cells”, Yale Univ. Press, New Haven and London, (1970).Google Scholar
  3. (3).
    K. Laki, J. Theor. Biol. 44, 117 (1974).CrossRefGoogle Scholar
  4. (4).
    A. Oplatka, H. Gadasi, R. Tirosh, Y. Lamed, A. Mühlrad and N. Liron, J. Mechanochem. Cell Motility 2, 295 (1974).Google Scholar
  5. (5).
    I. A. Kozlov and H. N. Mikelsaar, FEBS Letters 43, 212 (1974).CrossRefGoogle Scholar
  6. (6).
    A. F. Knowles and H. S. Penefsky, J. Biol. Chem. 247, 6617 (1972).Google Scholar
  7. (7).
    W. A. Catterall and P. L. Pedersen, J. Biol. Chem. 246, 4987 (1971).Google Scholar
  8. (8).
    Y. Tamaura, S. Yamazaki, S. Hirose and Y. Inada, Biochem. Biophys. Res. Commun. 53, 673 (1973).CrossRefGoogle Scholar
  9. (9).
    M. G. Rossmann, D. Moras and K. W. Olsen, Nature 250, 194 (1974).ADSCrossRefGoogle Scholar
  10. (10).
    M. Buehner, G. C. Ford, D. Moras, K. W. Olsen and M. G. Rossman Proc. Nat. Acad. Sci. USA 70, 3052 (1973).ADSCrossRefGoogle Scholar
  11. (11).
    C. I. Bränden, H. Eklund, B. Nordström, T. Boiwe, G. Söderlund, E. Zeppezauer, I. Ohlsson and A. Akeson, Proc. Nat. Acad. Sci. USA 70, 2439 (1973).ADSCrossRefGoogle Scholar
  12. (12).
    G. E. Schulz, M. Elzinga, F. Marx and R. H. Schirmer, Nature 250, 120 (1974).ADSCrossRefGoogle Scholar
  13. (13).
    G. E. Schulz and R. H. Schirmer, Nature 250, 142 (1974).ADSCrossRefGoogle Scholar
  14. (14).
    M. Elzinga, J. H. Collins, W. M. Kuehl and R. S. Adelstein, Proc. Nat. Acad. Sci. USA 70, 2687 (1973).ADSCrossRefGoogle Scholar
  15. (15).
    P. Y. Chou and G. F. Fassman, Biochemistry 13, 222 (1974).CrossRefGoogle Scholar
  16. (16).
    L. Muszbek, J. A. Gladner and K. Laki, Arch. Biochem. Biophys. (submitted).Google Scholar
  17. (17).
    G. Hegyi, G. Premecz, B. Sain and A. Mühlrad, Eur. J. Biochem. 44, 7 (1974).CrossRefGoogle Scholar
  18. (18).
    K. Laki, Actin. In “Contractile Proteins and Muscle”, Ed. K. Laki. M. Dekker, New York, 1971, p. 97.Google Scholar
  19. (19).
    T. Yamada, H. Shimizu and H. Suga, Biochim. Biophys. Acta 305, 642 (1973).CrossRefGoogle Scholar
  20. (20).
    R. G. Wolcott and P. Boyer, Biochem. Biophys. Res. Commun. 57, 709 (1974).CrossRefGoogle Scholar
  21. (21).
    H. Lischka, Chem. Phys. 2, 191 (1973).ADSCrossRefGoogle Scholar
  22. (22).
    E. F. Haugh, J.O. Hirschefelder, J. Chem. Phys. 23, 1778 (1955).ADSCrossRefGoogle Scholar
  23. (23).
    For a review of the simplified interaction schemes, see R. Rein in “Electronic Structure of Polymers and Molecular Crystals”, ed. J.-M. André and J. Ladik, Plenum Press, London, (1975).Google Scholar
  24. (24).
    H. A. Scheraga, Adv. Phys. Org. Chem. 6, 103 (1968).CrossRefGoogle Scholar
  25. (25).
    See, for instance, G. N. Ramachandran and V. Sasisekharan, Adv. in Prot. Chem. 23, 283 (1968).CrossRefGoogle Scholar
  26. (26).
    P. Otto and J. Ladik, Chem. Phys. (sumitted).Google Scholar
  27. (27).
    F. Martino and J. Ladik, J. Chem. Phys. 52, 2269 (1970)ADSCrossRefGoogle Scholar
  28. I. Mayer, J. Ladik and G. Biczo, Int. Quant. Chem. 7, 583 (1973).CrossRefGoogle Scholar
  29. (28).
    M. Rosenfeld and F. Martino (to be published).Google Scholar
  30. (29).
    J. Ladik, F. Martino and M. Rosenfeld (to be published).Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • K. Laki
    • 1
  • J. Ladik
    • 1
  1. 1.National Institute of Arthritis, Metabolism and Digestive Diseases, National Institutes of Health, Public Health ServiceU. S. Department of Health, Education and WelfareBethesdaUSA

Personalised recommendations