Interaction Between Polymer Constituents and the Structure of Biopolymers

Part of the Nato Advanced Study Institutes Series book series (volume 9)


Generally macromolecules may appear in a variety of three dimensional structures. A macromolecular chain, for example, may be linear or helical or in the form of a random coil. A few crosslinks may further introduce a complicated folding pattern into the chain. This structural flexibility is the consequence of hindered rotations around the acyclic bonds comprising the polymer chain and the availability of several rotational isomeric states for each one of the acyclic bonds. Cross-links between the constituents can be formed by covalent bridges or a variety of weaker interactions such as hydrogen bonds, ion bridges and London Van der Waals forces.


Wave Function Cartesian Component Polymer Constituent Exchange Repulsion Atomic Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Löwdin, P.-O. (1956). Advances in Physics 5, No. 17, 153; J. Chem. Phys. 18, 365, (1950).CrossRefGoogle Scholar
  2. 2.
    Dreyfus, M. and A. Pullman (1970). Theor. Chim. Acta 17, 109.CrossRefGoogle Scholar
  3. 3.
    Morokuma, K. (1971). J. Chem. Phys. 55, 1236.ADSCrossRefGoogle Scholar
  4. 4.
    Kollman, P.A. and L.C. Allen (1970). J. Chem. Phys. 52, 5085.ADSCrossRefGoogle Scholar
  5. 5.
    London, F. (1937). Trans. Faraday Soc. 33, 8.CrossRefGoogle Scholar
  6. 6.
    Rein, R., J. R. Rabinowitz, and T.J. Swissler (1972). J. Theor. Biol. 34, 215.CrossRefGoogle Scholar
  7. 7.
    Rein, R. (1973). Adv. Quant. Chem. 7, 335.CrossRefGoogle Scholar
  8. 8.
    Stamatiadou, M., T. Swissler, J. Rabinowitz and R. Rein (1972). Biopolymers 11, 1217.CrossRefGoogle Scholar
  9. 9.
    Rabinowitz, J., T. Swissler and R. Rein (1972). Intern. J. Quant. Chem. 6, 353.CrossRefGoogle Scholar
  10. 10.
    Egan, J.T., T. Swissler and R. Rein (1974). Intern. J. Quant. Chem. (in press).Google Scholar
  11. 11.
    Rabinowitz, J.R., and R. Rein (1972). Intern. J. Quant. Chem. 6, 669.CrossRefGoogle Scholar
  12. 12.
    Sinanoglu, O., (1964). Adv. Chem. Phys. 6, 315.CrossRefGoogle Scholar
  13. 13.
    Lifshitz, E.M. (1955). Zh. Eksperim. Theor. Fiz. 29, 94.Google Scholar
  14. 14.
    Nir, S., R. Rein and L. Weiss (1972). J. Theor. Biol. 34, 135.CrossRefGoogle Scholar
  15. 15.
    Coulson, C.A. and V. Danielson (1954). Arkiv Fysik, 8, 239.MATHGoogle Scholar
  16. 16.
    Rein, R., P. Claverie and M. Pollak (1968). Intern. J. Quant. Chem. 2, 129.ADSCrossRefGoogle Scholar
  17. 17.
    Claverie, P. and R. Rein (1969). Intern. J. Quant. Chem. 3, 537.ADSCrossRefGoogle Scholar
  18. 18.
    Rein, R., and M. Pollak (1967). J. Chem. Phys. 47, 2039.ADSCrossRefGoogle Scholar
  19. 19.
    Rein, R., Clarke, G.E., and Harris, F.E., (1970). “Quantum Aspects of Heterocyclic Compounds in Chemistry and Biochemistry” (E.D. Bergmann and B. Pullman eds.) p.86, Israel Acad. Sci. Humanities, Jerusalem.Google Scholar
  20. 20.
    Buckingham, A.D. (1954). Quart. Rev. Chem. Soc. (London) 13, 183.CrossRefGoogle Scholar
  21. 21.
    McLean, A.D. and M. Yoshimine (1967). J. Chem. Phys. 47, 1927.Google Scholar
  22. 22.
    Nir. S. (1974). J. Chem. Phys. (in press).Google Scholar
  23. 23.
    Pollak, M. and R. Rein (1967). J. Chem. Phys. 47, 2045.ADSCrossRefGoogle Scholar
  24. 24.
    Perahia, D., A. Saran and B. Pullman (1973). In “Conformation of Biological Molecules and Polymers” (E.D. Bergmann and B. Pullman, eds.) p. 225. The Israeli Academy of Sciences and Humanities, Jerusalem.Google Scholar
  25. 25.
    Pullman, B., and H. Berthold (1973). In “Conformation of Biological Molecules and Polymers” (E.D. Bergmann and B. Pullman, eds.) p. 209. The Israeli Academy of Sciences and Humanities, Jerusalem.Google Scholar
  26. 26.
    Scheraga, H.A. (1968). Adv. Phys. Org. Chem., 6, 103.CrossRefGoogle Scholar
  27. 27.
    Ramachandran, G.N., and V. Sasisekharan (1968). Adv. in Prot. Chem. 23, 283.CrossRefGoogle Scholar
  28. 28.
    Egan, J.T., (1974). Private Communication.Google Scholar
  29. 29.
    McWeeny, R. (1959). Proc. Roy. Soc. A. (London) 253, 242.MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    Murrel, J.N., M. Randic and D.R. Williams (1965). Proc. Roy. Soc. A. (London) 284, 566.ADSCrossRefGoogle Scholar
  31. 31.
    Claverie, P., (1968). “Molecular Associations in Biology” B. Pullman, ed., Academic Press., New York and London.Google Scholar
  32. 32.
    Olson, W.K. and P.J. Flory (1972). Biopolymers 11, 1–66.CrossRefGoogle Scholar
  33. 33.
    Brant, D.A., W.G. Miller and P.J. Flory (1967). J. Mol. Biol. 23, 47.CrossRefGoogle Scholar
  34. 34.
    Scheraga, H.A. and D. Poland (1970). “Theory of Helix Coil Transition in Biopolymers.” Academic Press, New York and London.Google Scholar
  35. 35.
    Goel, N.S. and E. P. Montroll (1968). Biopolymers 6, 731.CrossRefGoogle Scholar
  36. 36.
    Rein, R., N.S. Goel, N. Fukuda, M. Pollak, and P. Claverie (1969). Ann. N. Y. Acad. Sci. 153, 805.ADSCrossRefGoogle Scholar
  37. 37.
    Goel, N.S., N. Fukuda and R. Rein (1968). J. Theor. Biol. 18, 350.CrossRefGoogle Scholar
  38. 38.
    Egan, J.T. (1974). Research Report, SUNYAB.Google Scholar
  39. 39.
    Kitaigorodskii, A.I. (1961). Tetrahedron 14, 230.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • R. Rein
    • 1
    • 2
  1. 1.Roswell Park Memorial InstituteBuffaloUSA
  2. 2.State University of New York at BuffaloAmherstUSA

Personalised recommendations