Advertisement

Ab-Initio SCF-LCAO Hartree-Fock Calculations and the Determination of Correlation Corrections in Three-Dimensional Crystals

  • T. C. Collins
Part of the Nato Advanced Study Institutes Series book series (volume 9)

Abstract

A formalism for calculating a Hartree-Fock crystal is given in detail. This includes a description of the basis set used and integral approximations needed in the calculation. The results of the calculation of the ground and excited states are discussed. For the ground state the first order density matrix is compared with experiment by investigating the x-ray structure factors and the Compton profiles. The cohesive energy, lattice constant, and bulk modulus of the Hartree-Fock results are also compared with experiment to judge the correctness of this model. The Hartree-Fock excited stated plus correlation corrections are included. The corrections include relaxation of the electron and hole states by using two models. One is the screened exchange plus coulomb hole approximation where several approximations for the dielectric function are studied. The second model is the electronic polaron model where both the relaxation effects and a new scattering state are discussed. The correction to the electronic excited (or vitual) states so that they see the correct potential (namely a VN−1) is given in detail.

Keywords

Bulk Modulus Dielectric Function Cohesive Energy Virial Coefficient Penn Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. B. Kunz, Phys. Stat. Sol. 36, 301 (1969).ADSCrossRefGoogle Scholar
  2. 2.
    F. E. Farris and H. J. Monkhorst, Phys. Rev. Letters 23, 1026 (1969).ADSCrossRefGoogle Scholar
  3. 3.
    L. Dagens and F. Perrot, Phys. Rev. B5, 641 (1972).ADSGoogle Scholar
  4. 4.
    R. N. Euwena, D. L. Wihlhite and G. T. Surrat, Phys. Rev. 7B, 818 (1973).ADSGoogle Scholar
  5. 5.
    J. C. Slater, Phys. Rev. 81, 385 (1951).ADSMATHCrossRefGoogle Scholar
  6. 6.
    R. Gaspar, Acta Phys. Sci. Hung. 3, 263 (1954).MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    W.B. Fowler, Phys. Rev. 151, 657 (1966).ADSCrossRefGoogle Scholar
  9. 9.
    L. Hedin, Phys. Rev. 139, A796 (1965).ADSCrossRefGoogle Scholar
  10. 10.
    L. Hedin and S. Lundqvist, Solid State Physics, Vol. 23 (Academie, New York, ed. by F. Seitz, D. Turnbull, and H. Ehrenreich) (1969).Google Scholar
  11. 11.
    A. B. Kunz, Phys. Rev. B6, 606 (1972).ADSGoogle Scholar
  12. 12.
    A. B. Kunz, D. J. Michish and T. C. Collins, Phys. Rev. Letters 31, 756 (1973).ADSCrossRefGoogle Scholar
  13. 13.
    D. J. Michish, A. B. Kunz and T. C. Collins, Phys. Rev. B9, 4461 (1974).ADSGoogle Scholar
  14. 14.
    J. T. Devreese, A. B. Kunz and T. C. Collins, Solid State Commun. 11, 673 (1972).ADSCrossRefGoogle Scholar
  15. 15.
    T. C. Collins, A. B. Kunz and P. W. Deutsh, Phys. Rev. Sept. (1974).Google Scholar
  16. 16.
    V. Fock, Z. Physik, Vol 61, 1261 (1930).CrossRefGoogle Scholar
  17. 17.
    P. A. M. Dirac, Proc. Camb. Phil. Soc. 26, 376 (1930).ADSMATHCrossRefGoogle Scholar
  18. 18.
    T. Koopmans, Physica 1, 104 (1933).ADSMATHCrossRefGoogle Scholar
  19. 19.
    C. Herring, Phys. Rev. 57, 1169 (1940).ADSCrossRefGoogle Scholar
  20. 20.
    J. C. Slater, Phys. Rev. 36, 57 (1930).ADSMATHCrossRefGoogle Scholar
  21. 21.
    R. N. Euwena, Phys. Rev. B4, 4332 (1971).ADSGoogle Scholar
  22. 22.
    D. A. Liberman, Phys. Rev. 171, 1 (1966).ADSCrossRefGoogle Scholar
  23. 23.
    H. Preuss, Z. Naturforach 11, 823 (1956).MathSciNetADSGoogle Scholar
  24. 24.
    D. L. Wilhite and R. N. Euwema, J; Chem. Phys. 15 Jun 74.Google Scholar
  25. 25.
    R. N. Euwema, G. T. Surratt, D. L. Wilhite and G. G. WepferGoogle Scholar
  26. 26.
    G. T. Surratt, R. N. Euwema, D. L. Wilhite and G. G. Wepfer, Phys. Rev. (tobe published).Google Scholar
  27. 27.
    G. T. Surratt, R. N. Euwema, D. L. Wilhite and G. G. Wepfer, Phys. Rev. (to be published).Google Scholar
  28. 28.
    G. T. Surratt, R. N. Euwema, D. L. Wilhite, Phys. Rev. B8, 4019 (1973).ADSGoogle Scholar
  29. 29.
    M. Krauss, “Compendium of ab initio Calculations of Molecular Energies and Properties”, NBS Technical Note No. 438 (U.S. GPO, Washington, D. C. (1971).MATHGoogle Scholar
  30. 30.
    R. N. Euwema, G. T. Surratt, G. G. Wepfer and D. L. Wilhite, Phys. Rev. (to be published).Google Scholar
  31. 31.
    G. F. Chew and G. C. Wick, Phys. Rev. 85, 636 (1952).ADSMATHCrossRefGoogle Scholar
  32. 32.
    G. G. Wepfer, R. N. Euwema, G. T. Surratt and D. L. Wilhite, Int. J. Q. M. SYM 7, 613 (1973).Google Scholar
  33. 33.
    R. N. Euwema and G. T. Surratt, Solid State Communication (to be published).Google Scholar
  34. 34.
    N. E. Brener and T. C. Collins, “Proceedings of the 12th International Conference on the Physics of Semiconductors”, Stuttgart, Germany, July 74.Google Scholar
  35. 35.
    N. E. Brener, Phys. Rev. (to be published).Google Scholar
  36. 36.
    D. R. Penn, Phys. Rev. 128, 2093 (1963).ADSCrossRefGoogle Scholar
  37. 37.
    N. E. Brener, Phys. Rev. (to be published).Google Scholar
  38. 38.
    T. C. Collins, A. B. Kunz and J. T. Devreese, Int. J. Ouan. Chem. Symp. No. 7, 551 (1973).CrossRefGoogle Scholar
  39. 39.
    J. T. Devreese, J. De Sitter, and M. Govaerts, Phys. Rev. B5, 2367 (1972).ADSGoogle Scholar
  40. 40.
    W. H. Adams, J. Chem. Phys. 34, 89 (1961); 36, 2009 (1962).MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    T. L. Gilbert in “Molecular Orbitals in Chemistry, Physics, and Biology”, ed. P. O. Löwdin and P. Pullman (Academie Press, New York, 1964).Google Scholar
  42. 42.
    A. B. Kunz, Phys. Stat. Sol. B46, 697 (1971).ADSGoogle Scholar
  43. 43.
    D. F. Scofield, N. C. Dutta, and C. M. Dutta, Int. J. Quan. Chem. 6, 9 (1972).CrossRefGoogle Scholar
  44. 44.
    K. A. Brueckner, Phys. Rev. 97, 1353 (1955).ADSMATHCrossRefGoogle Scholar
  45. 45.
    J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957).MathSciNetADSGoogle Scholar
  46. 46.
    C. E. Moore, “Atomic Energy Levels”, Circular 467, National Bureau of Standards.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • T. C. Collins
    • 1
  1. 1.Aerospace Research LaboratoriesWright-Patterson Air Force BaseUSA

Personalised recommendations