Electronic Correlation in Polymers and Molecular Crystals

  • Jean-Louis Calais
Part of the Nato Advanced Study Institutes Series book series (volume 9)


These notes represent an outline of the lectures to be given during the course at Namur. They are not supposed to be either self-contained or exhaustive, but have to be complemented with the lectures. Their only purpose is to map out the general line of thought to be followed during the lectures and to give some key references from which most other references appropriate to the subject can be reached.


Electron Spin Resonance Electronic Correlation Cohesive Energy Hydrogen Molecule Intermolecular Force 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.-O. Löwdin, “Correlation in Quantum Mechanics”; Adv. Chem. Phys. II, 207 (1959).Google Scholar
  2. 2.
    R. Lefebvre, C. Moser (ed.), “Correlation Effects in Atoms and Molecules”; Adv. Chem. Phys. XIV, (1969).Google Scholar
  3. 3.
    L. Hedin, S. Lundqvist, “Effects of Electron-Electron and Electron-Phonon Interactions on the One-Electron States of Solids”, Solid State Phys. 23, 1 (1969).CrossRefGoogle Scholar
  4. 4.
    F. Herman, N.W. Dalton, T.R. Koehler (ed.), “Computational Solid State Physics”; Proceedings of an International Symposium held October 6–8, 1971 in Wildbad, Germany; Plenum Press New York and London 1972.Google Scholar
  5. 5.
    E.H. Lieb, D.C. Mattis, “Mathematical Physics in One Dimension. Exactly Soluble Models of Interacting Particles”; Academic Press, New York and London 1966.Google Scholar
  6. 6.
    H. Margenau, N.R. Kestner, “Theory of Intermolecular Forces”; International Series of Monographs in Natural Philosophy, Volume 18; Pergramon Press, Oxford 1969.Google Scholar
  7. 7.
    L. de Brouckère, M. Mandel, “Dielectric Properties of Dilute Polymer Solutions”; Adv. Chem. Phys. I, 77 (1958).Google Scholar
  8. 8.
    D.S. McClure, “Electronic Spectra of Molecules and Ions in Crystals. Part I. Molecular Crystals”; Solid State Phys. 8, 1 (1959).CrossRefGoogle Scholar
  9. 9.
    H.C. Wolf, “The Electronic Spectra of Aromatic Molecular Crystals”; Solid State Phys. 9, 1 (1959).CrossRefGoogle Scholar
  10. 10.
    H.S. Jarret, “Electron Spin Resonance Spectroscopy in Molecular Solids”; Solid State Phys. 14, 215 (1963).CrossRefGoogle Scholar
  11. 11.
    N. Saito, K. Okano, S. Iwayanagi, T. Hideshima, “Molecular Motion in Solid State Polymers”; Solid State Phys. 14, 344 (1963).Google Scholar
  12. 12.
    L. Jansen, “Quantum Chemistry and Crystal Physics. Stability of Crystals of Rare Gas Atoms and Alkali Halides in Terms of Three-Atom and Three-Ion Exchange Interactions”; Adv. Quantum Chem. 2, 119 (1965).ADSCrossRefGoogle Scholar
  13. 13.
    A. Keller, “Polymer Crystals”; Repts. Progr. Phys. 31, 623 (1968).ADSCrossRefGoogle Scholar
  14. 14.
    D.P. Craig, S.H. Walmsley, “Excitons in Molecular Crystals. Theory and Applications”; Frontiers in Chemistry, W.A. Benjamin, Inc., New York and Amsterdam 1968.Google Scholar
  15. 15.
    L. Meyer, “Phase Transitions in van der Waal’s Lattices”; Adv. Chem. Phys. XVI, 343 (1969).CrossRefGoogle Scholar
  16. 16.
    T. Kihara, “Multipolar Interactions in Molecular Crystals”; Adv. Chem. Phys. XX, 1 (1971).CrossRefGoogle Scholar
  17. 17.
    A.J. Kitaigorodsky, “Molecular Crystals and Molecules”; Vol. 29 of “Physical Chemistry” (E.M. Loebl, ed.). Academic Press, New York and London 1973.Google Scholar
  18. 18.
    C.A. Coulson, I. Fischer, “Notes on the Molecular Orbital Treatment of the Hydrogen Molecule”, Phil. Mag. 40, 386 (1949).MATHGoogle Scholar
  19. 19.
    R. Pauncz, “Alternant Molecular Orbital Method”; Studies in Physics and Chemistry 4; W.B. Saunders Co; Philadelphia and London 1967.Google Scholar
  20. 20.
    O. Goscinski, J.-L Calais, “Some Comments on the AMO Method for the Ground State of the Hydrogen Molecule”; Arkiv Fysik 29, 135 (1965).Google Scholar
  21. 21.
    J.-L. Calais, G. Sperber, “A Study of the AMO Method as Applied to the Lithium Metal. I. Review, Results and Discussion”; Int. J. Quantum Chem. 7, 501 (1973).CrossRefGoogle Scholar
  22. 22.
    J.-L. Calais, “Different Bands for Different Spins. II. Application to a Linear Chain of Hydrogen Atoms”, Arkiv Fysik 28, 511 (1965).Google Scholar
  23. 23.
    K.-F. Berggren, F. Martino, “Different Orbitals for Different Spins in an Infinite Chain of Hydrogen Atoms”, Phys. Rev. 184, 484 (1969).ADSCrossRefGoogle Scholar
  24. 24.
    Y.A. Kruglyak, I.I. Ukrainsky, “Study of the Electronic Structure of Alternant Radicals by the DODS Method”, Int. J. Quantum Chem. 4, 57 (1970).CrossRefGoogle Scholar
  25. 25.
    I.I. Ukrainsky, “Electronic Structure of Long Cumulene Chains”; Int. J. Quantum Chem. 6, 473 (1972).CrossRefGoogle Scholar
  26. 26.
    W.H. Adams, “Correlation Effects in the Alternant Molecular Orbital Approximation”; J. Chem. Phys. 39, 23 (1963).ADSCrossRefGoogle Scholar
  27. 27.
    R. Eisenschitz, F. London, “Über das Verhältnis der van der Waalschen Kräfte zu den homöopolaren Bindungskräften”; Z. Physik 60, 491 (1930).ADSMATHCrossRefGoogle Scholar
  28. 28.
    F. London, “Zur Theorie und Systematik der Molekularkräfte”; Z. Physik 63, 245 (1930).ADSMATHCrossRefGoogle Scholar
  29. 29.
    F. London, “Über einige Eigenschaften und Anwendungen der Molekularkräfte”; Z. Physik. Chem. B11, 222 (1930).Google Scholar
  30. 30.
    J.C. Slater, J.G. Kirkwood, “The van der Waals Forces in Gases”; Phys. Rev. 37., 682 (1931).ADSCrossRefGoogle Scholar
  31. 31.
    C. Mavroyannis, M.J. Stephen, “Dispersion Forces”; Mol. Phys. 5, 629 (1962).ADSCrossRefGoogle Scholar
  32. 32.
    O. Goscinski, “Upper and Lower Bounds to Polarizabilities and van der Waals Forces. I. General Theory”; Int. J. Quantum Chem. 2, 761 (1968).ADSCrossRefGoogle Scholar
  33. 33.
    J. Linderberg, “Dispersion Energy and Electronic Correlation in Molecular Crystals”; Arkiv Fysik 26, 323 (1964).MATHGoogle Scholar
  34. 34.
    P. Lindner, O. Goscinski, “Generalized Polarizabilities and Energy Expressions”; Int. J. Quantum Chem. 4S, 251 (1971).Google Scholar
  35. 35.
    J. Linderberg, F.W. Bystrand, “Cohesive Energy of Solid Neon”; Arkiv Fysik 26, 383 (1964).Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Jean-Louis Calais
    • 1
  1. 1.Quantum Chemistry GroupUniversity of UppsalaUppsalaSweden

Personalised recommendations