An Endogenous Peripheral Neurotransmitter
  • N. H. Neff
  • M. Hadjiconstantinou
  • Z. Lackovic
Part of the New Horizons in Therapeutics book series (NHTH)


There is now considerable evidence for the presence of dopamine receptors in peripheral tissues, as is documented throughout this volume. There has been, however, a reluctance to accept the possibility of a peripheral dopaminergic neuronal system to innervate these receptors for several reasons. Traditionally, students are taught that the autonomic nervous system is composed of only two types of neurons, cholinergic and noradrenergic. It is difficult to break with tradition. Dopamine is present in autonomic nerves, and it represents about 5–10% of the norepinephrine content. Therefore, it is assumed to be solely a precursor for norepinephrine synthesis and not a neurotransmitter. We should recall that dopamine in the spinal cord represents about 5–10% of the norepinephrine, and, until recently, it was considered to be only a precursor for norepinephrine. There is now a vast literature on the presence of dopaminergic neurons in the cord together with speculation about their possible physiological role (Commissiong et al., 1978; Gentleman et al, 1981; Commissiong and Neff, 1979). What percentage of dopamine should be found in a nerve or tissue to raise suspicion that dopaminergic neurons are present within a structure? Is the percentage of dopamine present meaningful if it is concentrated in a few neurons and nerve endings? Moreover, the quantity of amine stored in a nerve ending may not be as important as its rate of formation and release onto receptors.


Dopaminergic Neuron Dopamine Receptor Sympathetic Ganglion Superior Cervical Ganglion Ganglionic Transmission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, R. W., Gill, T. R., Jr., Yamabe, H., Lovenberg, W., and Keiser, H. R., 1974, Effects of dietary sodium and acute saline infusion on the interrelationship between dopamine excretion and adrenergic activity in man, J. Clin. Invest. 54:194–200.PubMedCrossRefGoogle Scholar
  2. Altura, B. M., Gebrewold, A., and Lassoff, S., 1980, Biphasic responsiveness of rat pial arterioles to dopamine: Direct observations on the microcirculation, Br. J. Pharmacol. 69:543–544.PubMedCrossRefGoogle Scholar
  3. Attie, M. F., Brown, E. M., Gardner, D. G., Spiegel, A. M., and Aurbach, G. D., 1980, Characterization of the dopamine-responsive adenylate cyclase of bovine parathyroid cells and its relationship to parathyroid hormone secretion, Endocrinology 107:1776–1781.PubMedCrossRefGoogle Scholar
  4. Badia, A., Bermejo, P., and Jane, F., 1982, Pre-and postsynaptic effects of Sulpiride in the rat isolated vas deferens, J. Pharm. Pharmacol. 34:266–268.PubMedCrossRefGoogle Scholar
  5. Ball, S. G., Oats, N. S., and Lee, M. R., 1978, Urinary dopamine in man and rat: Effects of inorganic salts on dopamine excretion, Clin. Sci. Mol. Med. 55:167–173.PubMedGoogle Scholar
  6. Beck, L., Pollard, A. A., Kayaalp, S. O., and Weiner, L. M., 1966, Sustained dilatation elicited by sympathetic nerve stimulation, Fed. Proc. 25:1596–1606.PubMedGoogle Scholar
  7. Bell, C, 1982a, Dopamine as a postganglionic autonomic neurotransmitter, Neuroscience 7:1–8.CrossRefGoogle Scholar
  8. Bell, C, 1982b, Benztropine-induced Prolongation of responses to vasodilator nerve Stimulation in the canine paw pad, Br. J. Pharmacol. 76:231–233.CrossRefGoogle Scholar
  9. Bell, C, and Gillespie, J. S., 1981, Dopamine and noradrenaline levels in peripheral tissues of several mammalian species, J. Neurochem. 36:703–706.PubMedCrossRefGoogle Scholar
  10. Bell, C, and Lang, W. J., 1979, Evidence for dopaminergic vasodilator innervation of the canine paw pad, Br. J. Pharmacol. 67:337–343.PubMedCrossRefGoogle Scholar
  11. Bell, C, and Muller, B. D., 1982, Absence of dopamine-β-hydroxylase in some catecholamine-containing sympathetic ganglion cells of the dog: Evidence for dopaminergic autonomic neurones, Neurosci. Lett. 31:31–35.PubMedCrossRefGoogle Scholar
  12. Bell, C, Lang, W. J., and Laska, F., 1978a, Dopamine-containing vasomotor nerves in the dog kidney, J. Neurochem. 31:77–83.CrossRefGoogle Scholar
  13. Bell, C, Lang, W. J., and Laska, F., 1978b, Dopamine-containing axons supplying the arterio-venous anastomoses of the canine paw pad, J. Neurochem. 31:1329–1333.CrossRefGoogle Scholar
  14. Bjorklund, A., Cegrell, L., Falck, B., Ritzin, M., and Rosengren, E., 1970, Dopaminecontaining cells in sympathetic ganglia, Acta Physiol. Scand. 78:334–338.PubMedCrossRefGoogle Scholar
  15. Boadle-Biber, M. C, and Roth, R. H., 1975, Formation of dopamine and noradrenaline in rat vas deferens: Comparison with guinea pig vas deferens, Br. J. Pharmacol. 55:73–78.PubMedCrossRefGoogle Scholar
  16. Brodde, O. E., 1982, Vascular dopamine receptors: Demonstration and characterization by in vitro studies, Life Sci. 31:289–306.PubMedCrossRefGoogle Scholar
  17. Brown, E. M., Carroll, R. J., and Aurbach, G. D., 1977, Dopaminergic Stimulation of cyclic AMP accumulation and parathyroid hormone release from dispersed bovine parathyroid cells, Proc. Natl. Acad. Sci. U.S.A. 74:4210–4213.PubMedCrossRefGoogle Scholar
  18. Brown, E. M., Attie, M. F., Reen, S., Gardner, D. G., Kebabian, J., and Aurbach, G. D., 1980, Characterization of dopaminergic receptors in dispersed bovine parathyroid cells, Mol. Pharmacol. 18:335–340.PubMedGoogle Scholar
  19. Carey, R. M., Thorner, M. O., and Ortt, E. M., 1979, Effects of metoclopramide and bromocriptine on the renin-angiotensin-aldosterone system in man. Dopaminergic control of aldosterone, J. Clin. Invest. 63:727–735.PubMedCrossRefGoogle Scholar
  20. Carlsson, A., and Lindqvist, M., 1963, Effect of chlorpromazine or haloperidol or formation of 3-methoxytyramine and normetanephrine in mouse brain, Acta Pharmacol. Toxicol. (Kbh.) 20:140–144.CrossRefGoogle Scholar
  21. Cavero, I., Massingham, R., and Lefevre-Borg, F., 1982a, Peripheral dopamine receptors, potential targets for a new class of antihypertensive agents. Part I. Subclassification and functional description, Life Sci. 31:939–948.CrossRefGoogle Scholar
  22. Cavero, I., Massingham, R., and Lefevre-Borg, F., 1982b, Peripheral dopamine receptors, potential targets for a new class of antihypertensive agents. Part II. Sites and mechanisms of action of dopamine receptor agonists, Life Sci. 31:1059–1069.CrossRefGoogle Scholar
  23. Collins, G. G., and West, G. B., 1968, The release of 3H-dopamine from the isolated rabbit ileum, Br. J. Pharmacol. 34:514–522.PubMedCrossRefGoogle Scholar
  24. Commissiong, J. W., and Neff, N. H., 1979, Current Status of dopamine in the mammalian spinal cord, Biochem. Pharmacol. 28:1569–1573.PubMedCrossRefGoogle Scholar
  25. Commissiong, J. W., Galli, C. L., and Neff, N. H., 1978, Differentiation of dopaminergic and noradrenergic neurons in rat spinal cord, J. Neurochem. 30:1095–1099.PubMedCrossRefGoogle Scholar
  26. Costa, E., and Neff, H. H., 1966, Isotopic and non-isotopic measurements of the rate of catecholamine biosynthesis, in: Biochemistry and Pharmacology of the Basal Ganglia (E. Costa, L. J. Cote, and M. D. Yahr, eds.), Raven Press, New York, pp. 141–156.Google Scholar
  27. Dahlstrom, A., and Fuxe, K., 1965, Evidence of the existence of an outflow of noradrenaline nerve fibers in the ventral roots of the rat spinal cord, Experientia 21:409–410.PubMedCrossRefGoogle Scholar
  28. Dinerstein, R. J., Vannice, J., Henderson, R. C, Roth, L. J., Goldberg, L. I., and Hoffmann, P. C, 1979, Histofluorescence techniques provide evidence for dopamine-containing neuronal elements in canine kidney, Science 205:497–499.PubMedCrossRefGoogle Scholar
  29. Dunn, M. G., and Bosmann, B. H., 1981, Peripheral dopamine receptor identification: Properties of a specific dopamine receptor in the rat adrenal zona glomerulosa, Biochem. Biophys. Res. Commun. 99:1081–1087.PubMedCrossRefGoogle Scholar
  30. Edvinsson, L., Hardebo, J. E., McCulloch, J., and Owman, C, 1978, Effects of dopaminergic agonists and antagonists on isolated cerebral blood vessels, Acta. Physiol. Scand. 104:349–359.PubMedCrossRefGoogle Scholar
  31. Eranko, O., and Harkonen, M., 1963, Histochemical demonstration of fluorogenic amines in the cytoplasm of sympathetic ganglion cells of the rat, Acta Physiol. Scand. 58:285–286.CrossRefGoogle Scholar
  32. Furuta, Y., Hashimoto, K., Iwatsuki, K., and Takeuchi, 0., 1973, Effects of enzyme inhibitors of catecholamine metabolism and of haloperidol on the pancreatic secretion induced by L-DOPA and by dopamine in dogs, Br. J. Pharmacol. 47:77–84.PubMedCrossRefGoogle Scholar
  33. Gentleman, S., Parenti, M., Commissiong, J. W., and Neff, N. H., 1981, Dopamine-activated adenylate cyclase of spinal cord: Supersensitivity following transection of the cord, Brain Res. 210:271–275.PubMedCrossRefGoogle Scholar
  34. George, D. T., and Rayfield, E. J., 1974, L-Dopa induced plasma glucagon release, J. Clin. Endocrinol. Metab. 39:618–621.PubMedCrossRefGoogle Scholar
  35. Goldberg, L. I., 1972, Cardiovascular and renal actions of dopamine: Potential clinical applications, Pharmacol. Rev. 24:1–29.PubMedGoogle Scholar
  36. Goldberg, L. I., Volkman, P. H., and Kohli, J. D., 1978, A comparison of the vascular dopamine receptor with other dopamine receptors, Annu. Rev. Pharmacol. Toxicol. 18:57–79.PubMedCrossRefGoogle Scholar
  37. Hadjiconstantinou, M., Potter, P. E., and Neff, N. H., 1982, Transsynaptic modulation via muscarinic receptors of serotonin-containing SIF cells of superior cervical ganglion, J. Neurosci. 2:1836–1839.PubMedGoogle Scholar
  38. Head, R. J., and Berkowitz, B. A., 1979, Concentration and function of dopamine in normal and diseased blood vessels, in: Peripheral Dopamine Receptor (J. L. Imbs and J. Schwartz, eds.), Pergamon Press, Oxford, pp. 173–181.Google Scholar
  39. Head, R. J., Hjelle, J. T., Jarrott, B., Berkowitz, B., Cardinale, G., and Spector, S., 1980, Isolated brain microvessels: Preparation, morphology, histamine and catecholamine contents, Blood Vessels 17:173–186.PubMedGoogle Scholar
  40. Heilman, R. D., and Lum, B. K., 1971, Studies on the intestinal relaxation produced by dopamine, J. Pharmacol. Exp. Ther. 178:63–72.PubMedGoogle Scholar
  41. Hokfelt, T., Kellerth, J. O., Nilsson, G., and Pernow, B., 1975, Experimental immunohistochemical studies on the localization and distribution of substance P in cat primary sensory neurons, Brain Res. 100:232–252.CrossRefGoogle Scholar
  42. Iwatsuki, K., and Chiba, S., 1980, Comparative study of the secretory response to dopamine and seven amino acid conjugated derivatives on the blood-perfused canine pancreas, Jpn. J. Pharmacol. 30:621–627.PubMedCrossRefGoogle Scholar
  43. Karoum, F., Garrison, C. K., Neff, N. H., and Wyatt, R. J., 1977, Transsynaptic modulation of dopamine metabolism in the rat superior cervical ganglion, J. Pharmacol. Exp. Ther. 201:654–661.PubMedGoogle Scholar
  44. Karoum, F., Speciale, S. G., Jr., and Neff, N. H., 1980, 3,4-Dihydroxyphenylacetic acid content of sympathetic ganglia as a possible biochemical indicator of small intensely fluorescent cell participation in ganglionic transmission, Biochem. Pharmacol. 29:118–119.PubMedCrossRefGoogle Scholar
  45. Katz, D. M., Markey, K. A., Goldstein, M., and Black, I. B., 1982, Expression of catecholaminergic characteristic by peripheral sensory ganglion cells in the normal adult rat in vivo, Soc. Neurosci. Abstr. 8:8.Google Scholar
  46. Kebabian, J. W., and Calne, D. B., 1979, Multiple receptors for dopamine, Nature 277:93–96.PubMedCrossRefGoogle Scholar
  47. Kojima, H., Suetake, K., Yokoo, H., Anraku, S., Inanago, K., Higashi, H., Nishi, S., Yamamoto, T., and Ochi, J., 1981, Dopamine-containing cells in rabbit nodose ganglia, Experientia 37:1332–1333.PubMedCrossRefGoogle Scholar
  48. Koslow, S. H., Bjegovic, M., and Costa, E., 1975, Catecholamines in sympathetic ganglia of rat: Effects of dexamethasone and reserpine, J. Neurochem. 24:277–281.PubMedCrossRefGoogle Scholar
  49. Lackovic, Z., and Neff, N. H., 1980, Evidence for the existence of peripheral dopaminergic neurons, Brain Res. 193:289–292.PubMedCrossRefGoogle Scholar
  50. Lackovic, Z., Kleinman, J., Karoum, F., and Neff, N. H., 1981, Dopamine and its metabolites in human peripheral nerves: Is there a widely distributed system of peripheral dopaminergic nerves? Life Sci. 29:917–922.PubMedCrossRefGoogle Scholar
  51. Lackovic, Z., Relja, M., and Neff, N. H., 1982, Catabolism of endogenous dopamine in peripheral tissues: Is there an independent role for dopamine in peripheral neurotransmission? J. Neurochem. 38:1453–1458.PubMedCrossRefGoogle Scholar
  52. Libet, B., 1977, The role SIF-cells play in ganglionic transmission, Adv. Biochem. Psychopharmacol. 16:541–546.PubMedGoogle Scholar
  53. Libet, B., and Owman, C, 1974, Concomitant changes in formaldehyde-induced fluorescence of dopamine interneurons and in slow inhibitory postsynaptic potentials of the rabbit superior cervical ganglion, induced by stimulation of the preganglionic nerve or by a muscarinic agent, J. Physiol. (Lond.) 237:635–662.Google Scholar
  54. Libet, B., and Tosaka, T., 1970, Dopamine as a synaptic transmitter and modulator in sympathetic ganglia; a different mode of synaptic action, Proc. Natl. Acad. Sci. U.S.A. 67:667–673.PubMedCrossRefGoogle Scholar
  55. Lokhandwala, M. F., 1979, Presynaptic receptor Systems on cardiac sympathetic nerves, Life Sci. 24:1823–1832.PubMedCrossRefGoogle Scholar
  56. Long, J. P., Heintz, S., Cannon, J. G., and Kim, J., 1975, Inhibition of the sympathetic nervous system by 5,6-dihydroxy-2-dimethylamino tetralin (M-7), apomorphine and dopamine, J. Pharmacol. Exp. Ther. 192:336–342.PubMedGoogle Scholar
  57. Lutold, B. E., Karoum, F., and Neff, N. H., 1979. Activation of rat sympathetic ganglia SIF cell dopamine metabolism by muscarinic agonists, Eur. J. Pharmacol. 54:21–26.PubMedCrossRefGoogle Scholar
  58. Matthews, M. R., 1980, Ultrastructural studies relevant to the possible funetions of small granule-containing cells in the rat superior cervical ganglion, Adv. Biochem. Psychopharmacol. 25:77–86.PubMedGoogle Scholar
  59. McKenna, T. J., Island, D. P., Nicholson, W. E., and Liddle, G. W., 1979, Dopamine inhibits angiotensin-stimulated aldosterone biosynthesis in bovine adrenal cells, J. Clin. Invest. 64:287–291.PubMedCrossRefGoogle Scholar
  60. Morgunov, N., and Baines, A. D., 1981, Renal nerves and catecholamine excretion, Am. J. Physiol. 240:F75–F81.PubMedGoogle Scholar
  61. Mukhopadhyay, A. K., and Weisbrodt, N., 1977, Effect of dopamine on esophageal motor function, Am. J. Physiol. 232:E19–E24.PubMedGoogle Scholar
  62. Murthy, V. V., Gilbert, J. C, Goldberg, L. I., and Kuo, J. F., 1976, Dopamine-sensitive adenylate cyclase in canine renal artery, J. Pharm. Pharmacol. 28:567–571.PubMedCrossRefGoogle Scholar
  63. Nagy, J. I., and Hunt, S. P., 1982, Fluoride-resistant acid phosphatase-containing neurones in dorsal root ganglia are separate from those containing substance P or somatostatin, Neuroscience 7:89–97.PubMedCrossRefGoogle Scholar
  64. Nakajima, T., Naitoh, F., and Kuruma, I., 1977, Dopamine-sensitive adenylate cyclase in the rat kidney particulate preparation, Eur. J. Pharmacol. 41:163–169.PubMedCrossRefGoogle Scholar
  65. Nielsen, K. C, and Owman, C, 1967, Adrenergic innervation of pial arteries related to the circle of Willis of the cat, Brain Res. 6:773–776.PubMedCrossRefGoogle Scholar
  66. Norbiato, G., Bevilacqua, M., Raggi, U., Micossi, P., and Moroni, C, 1977, Metoclopramide increases plasma aldosterone concentration in man, J. Clin. Endocrinol. Metab. 45:1313–1316.PubMedCrossRefGoogle Scholar
  67. Noth, R. H., McCallum, R. W., Contino, C, and Havelick, J., 1980, Tonic dopaminergic suppression of plasma aldosterone, J. Clin. Endocrinol. Metab. 51:64–69.PubMedCrossRefGoogle Scholar
  68. Owman, C, and Santini, M., 1966, Adrenergic nerves in spinal ganglia of the cat, Acta Physiol. Scand. 68:127–128.CrossRefGoogle Scholar
  69. Price, J., and Mudge, A. W., 1983, A subpopulation of rat dorsal root ganglion neurones in catecholaminergic, Nature 301:241–243.PubMedCrossRefGoogle Scholar
  70. Relja, M., Lackovic, Z., and Neff, N. H., 1982, Evidence for the presence of dopaminergic receptors in vas deferens, Life Sci. 31:2571–2575.PubMedCrossRefGoogle Scholar
  71. Rolewicz, T. F., and Zimmerman, B. G., 1972, Peripheral distribution of cutaneous sympathetic vasodilator system, Am. J. Physiol. 223:939–943.PubMedGoogle Scholar
  72. Shima, S., Kawashima, Y., Hirai, M., and Asakura, M., 1980, Effect of adrenergic Stimulation on adenylate cyclase activity in rat prostate, Biochem. Biophys. Acta 628:255–262.PubMedCrossRefGoogle Scholar
  73. Simon, A., and Van Maanen, E. F., 1976, Dopamine receptors and dopaminergic nerves in vas deferens of the rat, Arch. Int. Pharmacodyn. Ther. 222:4–15.PubMedGoogle Scholar
  74. Sowers, J. R., Stern, N., and Taylor, I. L., 1982, Evidence for dopaminergic modulation of pancreatic Polypeptide secretion in man, Life Sci. 31:2971–2975.PubMedCrossRefGoogle Scholar
  75. Spitz, I. M., Zylber, E., Jersky, J., and Leroith, D., 1979, Atropine suppression of basal and metoclopramide-induced human pancreatic Polypeptide secretion in man, Metabolism 28:527–530.PubMedCrossRefGoogle Scholar
  76. Stephenson, R. K., Sole, M. J., and Baines, A. D., 1982, Neural and extraneural catecholamine produetion by rat kidneys, Am. J. Physiol. 242:F261–F266.PubMedGoogle Scholar
  77. Suzuki, Y., Okada, T., Shibuya, M., Mutsuga, N., Kageyama, N., and Hidaka, H., 1983, Regional distribution of dopamine and norepinephrine in canine cerebral arteries—Effect of pre-or postganglionic sympathetic denervation, Brain Res. 258:53–58.CrossRefGoogle Scholar
  78. Tayo, F. M., 1979, Potentiation of dopamine-induced contractions of the rat vas deferens by low concentrations of its antagonists, Arch. Int. Pharmacodyn. Ther. 241:190–196.PubMedGoogle Scholar
  79. Tayo, F. M., 1981, Prejunctional inhibitory dopamine receptors in the rat isolated vas deferens, Arch. Int. Pharmacodyn. Ther. 254:28–37.PubMedGoogle Scholar
  80. Valenzuela, J. E., 1976, Dopamine as a possible neurotransmitter in gastric relaxation, Gastroenterology 71:1019–1022.PubMedGoogle Scholar
  81. Verhofstad, A. A. J., Steinbusch, H. W. M., Penke, B., Varga, J., and Joosten, H. W. J., 1981, Serotonin-immunoreactive cells in the superior cervical ganglion of the rat. Evidence for the existence of separate Serotonin-and catecholamine-containing small ganglionic cells, Brain Res. 212:39–49.PubMedCrossRefGoogle Scholar
  82. Wamsley, J. K., Black, A. C, Jr., Redick, J. A., West, J. R., and Williams, T. H., 1978, SIF cells, cyclic AMP responses, and catecholamines of guinea pig superior cervical ganglion, Brain Res. 156:75–82.PubMedCrossRefGoogle Scholar
  83. Williams, T. H., Chiba, T., Black, A. C., Jr., Bhalla, R. C, and Jew, J., 1976, Species variation in SIF cells of superior cervical ganglia: Are there two functional types? in: SIF Cells: Structure and Function of the Small Intensely Fluorescent Sympathetic Cells (O. Eranko, ed.), Fogarty International Center Proceedings No. 30, pp. 143–162. DHEW Publication No (NIH) 76-942, Washington, D. C.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • N. H. Neff
    • 1
  • M. Hadjiconstantinou
    • 1
  • Z. Lackovic
    • 2
  1. 1.Laboratory of Preclinical PharmacologyNational Institute of Mental Health, Saint Elizabeths HospitalUSA
  2. 2.Department of PharmacologyMedical Faculty University of ZagrebZagrebYugoslavia

Personalised recommendations