Advertisement

Structure—Activity Relationships of Dopamine Receptor Agonists

  • Carl Kaiser
Part of the New Horizons in Therapeutics book series (NHTH)

Abstract

Dopamine (DA*), which is chemically defined as β-(3,4-dihydroxyphenyl) ethylamine, 3-hydroxytyramine, or 5-(2-aminoethyl)-1,2-benzenediol, was first synthesized in 1910 (Mannich and Jacobsohn, 1910). At that time it was classified as a sympathomimetic amine because only its epinephrinelike actions were known (Barger and Dale, 1910). Although its formation from L-Tyr via L-DOPA was recognized (Blaschko, 1939; Holtz, 1939), DA was not identified in the mammalian organism and shown to have pharmacological actions differing from those of epinephrine until 1942 (Holtz et al., 1942). It was first shown to be present in mammalian tissue by Goodall (1950a,b, 1951). Blaschko (1957) first suggested an independent physiological role for DA in the periphery. More recently, DA has been identified as a neurotransmitter in the CNS (Carlsson et al., 1958; Carlsson, 1959; Goodall and Alton, 1968; Hornykiewicz, 1971).

Keywords

Receptor Agonist Dopamine Receptor Adenylate Cyclase Dopamine Agonist Ergot Alkaloid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, D. M., Blumberg, A. L., McCafferty, J. P., Sherman, S. S., Weinstock, J., Kaiser, C, and Berkowitz, B., 1983, Potential usefulness of renal vasodilators in hypertension and renal disease: SK&F 82526, Fed. Proc. 42:186–190.PubMedGoogle Scholar
  2. Andén, N.-E., Golembiowska-Nikitin, K., and Thornström, U., 1982, Selective Stimulation of dopamine and noradrenaline autoreceptors by B-HT 920 and B-HT 933, respectively, Naunyn Schmiedebergs Arch. Pharmacol. 321:100–104.PubMedCrossRefGoogle Scholar
  3. Anderson, K., Kuruvilla, A., Uretsky, N., and Miller, D. D., 1981, Synthesis and pharmacological evaluation of sulfonium analogs of dopamine: Non-classical dopamine agonists, J. Med. Chem. 24:683–687.PubMedCrossRefGoogle Scholar
  4. Andrews, C D., Davis, A., Freeman, H. S., McDermed, J. D., Poat, J. A., and Woodruff, G. N., 1978, Effects of ( + )-and (-)-enantiomers of 2-amino-6,7-dihydroxy-l,2,3,4-tetrahydronaphthalene on dopamine uptake, Proc. Er. Pharm. Soc. 1978:433P.Google Scholar
  5. Arana, G. W., Baldessarini, R. J., and Neumeyer, J. L., 1983, Structure-activity characteristics for high affinity dopamine-agonist binding at central dopamine receptors, Acta Pharm. Suec. [Suppl.] 2:25–36.Google Scholar
  6. Armstrong, J., and Barlow, R. B., 1976, The ionization of phenolic amines, including apomorphine, dopamine and catecholamines and an assessment of zwitterion constants, Br. J. Pharmacol. 57:501–516.PubMedCrossRefGoogle Scholar
  7. Arnerić, S. P., Maixner, W., Long, J. P., Mott, J., Barfknecht, C. F., Perez, J. A., and Cannon, J. G., 1982, Structure-activity relationships for 2-aminotetralins and 2-aminoindanes: Inhibitory neuroeffector mechanisms in isolated guinea pig ilea, Arch. Int. Pharmacodyn. Ther. 258:84–99.PubMedGoogle Scholar
  8. Arvidsson, L.-E., Hacksell, U., Nilsson, J. L. G., Hjorth, S., Carlsson, A., Lindberg, P., Sanchez, D., and Wikstrom, H., 1981, 8-Hydroxy-2-(di-n-propylamino)tetralin, a new centrally acting 5-hydroxytryptamine receptor agonist, J. Med. Chem. 24:921–923.PubMedCrossRefGoogle Scholar
  9. Bach, N. J., and Kornfeld, E. C, 1978, 4-(Di-n-propyl)amino-1,3,4,5-tetrahydrobenz[cd]indole, U.S. Patent 4,110,339, Chem. Abstr. 90:121415f.Google Scholar
  10. Bach, N. J., Kornfeld, E. C, Jones, N. D., Chaney, M. 0., Dorman, D. E., Paschal, J. W., Clemens, J A., and Smalstig, E. B., 1980a, Bicyclic and tricyclic ergoline partial structures. Rigid 3-(2-aminoethyl)pyrroles and 3-and 4-(2-aminoethyl)pyrazoles as dopamine agonists, J. Med. Chem. 23:481–491.CrossRefGoogle Scholar
  11. Bach, N. J., Kornfeld, E. C, Clemens, J. A., Smalstig, E. B., and Fredrickson, R. C. A., 1980b, Preparation and biological evaluation of 2-azaergolines, J. Med. Chem. 23:492–494.CrossRefGoogle Scholar
  12. Bach, N. J., Kornfeld, E. C, Clemens, J. A., and Smalstig, E. B., 1980c, Conversion of ergolines to hexahydro-and octahydrobenzo[flquinolines (depyrroloergolines), J. Med. Chem. 23:812–814.CrossRefGoogle Scholar
  13. Baggio, G., and Ferrari, F., 1981, DPI, a supposed selective agonist of inhibitory dopamine receptors, strongly increases rat diuresis through α-adrenergic receptor activation, Life Sci. 28:1449–1456.PubMedCrossRefGoogle Scholar
  14. Bailey, D. M., 1982, Heterocyclic alkyl naphthols, U.S. Patent 4,327,022, April 27, 1982.Google Scholar
  15. Bailey, E. V., and Stone, T. W. 1975, The mechanism of action of amantadine in parkinsonism: A review, Arch. Int. Pharmacodyn. Ther. 216:246–262.PubMedGoogle Scholar
  16. Bannon, M. J., Grace, A. A., Bunney, B. S., and Roth, R. H., 1980, Evidence for an irreversible interaction of bromoeryptine with central dopamine receptors, Naunyn Schmiedebergs Arch. Pharmacol. 312:37–41.PubMedCrossRefGoogle Scholar
  17. Barger, G., and Dale, H. H., 1910, Chemical structure and sympathomimetic action of amines, J. Physiol. (Lond.) 41:19–59.Google Scholar
  18. Barnett, A., and Fiove, J. W., 1971, Hypotensive effects of apomorphine in anesthetized cats, Eur. J. Pharmacol. 14:206–208.PubMedCrossRefGoogle Scholar
  19. Bergin, R., and Carlström, D., 1968, Structure of the pyrocatecholamines. II. Crystal structure of dopamine hydrochloride, Acta Crystallogr. 24B: 1506–1510.Google Scholar
  20. Berney, D., and Schuh, K., 1982, Structural analogues of apophines. Part 1: Synthesis of apomorphines with the catecholic moiety replaced by 5-membered heteroeycles, Helv. Chim. Acta 65(4): 1304–1309.CrossRefGoogle Scholar
  21. Besson, M. J., Cheramy, A., Feltz, P., and Glowinski, J., 1969, Release of newly synthesized dopamine from dopamine-containing terminals in the striatum of the rat, Proc. Natl. Acad. Sci. U.S.A. 62:741–748.PubMedCrossRefGoogle Scholar
  22. Bird, P., Bruderlein, F. T., and Humber, L. G., 1976, Crystallographic studies on neuroleptics of the benzoeycloheptapyridoisoquinoline series. The crystal structure of butaclamol hydrobromide and the absolute configuration and crystal structure of dexclamol hydrobromide, Can. J. Chem. 54:2715–2722.CrossRefGoogle Scholar
  23. Birket-Smith, E., Bøttcher, J., Dupont, E., Holm, P., Jensen, J. P. A., Kristensen, O., Køhler, O., and Mikkelsen, B., 1978, Dopaminergic agonist Ro 8-4650 in Parkinson’s disease, Acta Neurol. Stand. 58:74–76.CrossRefGoogle Scholar
  24. Blaschko, H., 1939, The specific action of l-dopa decarboxylase, J. Physiol. (Lond.) 96:50–51P.Google Scholar
  25. Blaschko, H., 1957, Metabolism and storage of biogenic amines, Experientia 13:9–12.PubMedCrossRefGoogle Scholar
  26. Bockaert, J., 1978, Coupling of neurotransmitter receptors with adenylate cyclase. A tool for studying their pharmacological properties, distribution and modulation in the central nervous system, J. Physiol. (Paris) 74:527–533.Google Scholar
  27. Borgman, R. J., Erhardt, P. W., Gorczynski, R. J., and Anderson, W. G., 1978, (±)-(E)-2-(3,4-Dihydroxyphenyl)cyclopropylamine hydrochloride (ASL-7003): A rigid analog of dopamine, J. Pharm. Pharmacol. 30:193–195.PubMedCrossRefGoogle Scholar
  28. Broll, M., Eymard, P., Lacolle, J.-Y., and Werbenec, J.-P., 1978, Etude pharmacologique d’un antiparkinsonien potentiel: La diprobutine, J. Pharmacol. (Paris) 9(2): 121–131.Google Scholar
  29. Burkman, A. M., 1973, Biological activity of apomorphine fragments: Dissociation of emetic and stereotypical effects, Neuropharmacology 12:83–85.PubMedCrossRefGoogle Scholar
  30. Burkman, A. M., and Cannon, J. G., 1972, Screening norauciferine derivatives for apomorphine-like activity, J. Pharm. Sci. 61(5):813–814.PubMedCrossRefGoogle Scholar
  31. Bustard, T. M., and Egan, R. S., 1971, The conformation of dopamine hydrochloride, Tetrahedron 27:4457–4469.CrossRefGoogle Scholar
  32. Calne, D. B., and Larsen, T. A., 1983, Potential therapeutic uses of dopamine receptor agonists and antagonists, in: Dopamine Receptors, American Chemical Society Symposium Series 224 (C. Kaiser and J. W. Kebabian, eds.), American Chemical Society, Washington, pp. 147–153.Google Scholar
  33. Camerman, N., and Camerman, A., 1981, On the stereochemistry of dopaminergic ergoline derivatives, Mol. Pharmacol. 19:517–519.PubMedGoogle Scholar
  34. Camerman, N., Chan, L. Y. Y., and Camerman, A., 1979, Stereochemical characteristics of dopamine agonists: Molecular structure of bromocriptine and structural comparisons with apomorphine, Mol. Pharmacol. 16:729–736.PubMedGoogle Scholar
  35. Cannon, J. G., 1975, Chemistry of dopaminergic agonists, in: Advances in Neurology, Volume 9 (D. B. Calne, T. N. Chase, and A. Barbeau, eds.), Raven Press, New York, pp. 177–183.Google Scholar
  36. Cannon, J. G., 1979, Dopamine congeners derived from the benzo[f]quinoline ring, in: Peripheral Dopaminergic Receptors, Advances in the Biosciences, Volume 20 (J.-L. Imbs and J. Schwartz, eds.), Pergamon Press, New York, pp. 87–94.Google Scholar
  37. Cannon, J. G., Kim, J. C, Aleem, M. A., and Long, J. P., 1972, Centrally acting emetics. Derivatives of β-naphthylamine and 2-indanamine, J. Med. Chem. 15(4):348–350.PubMedCrossRefGoogle Scholar
  38. Cannon, J. G., Hatheway, G. J., Long, J. P., and Sharabi, F. M., 1976, Centrally acting emetics. 10. Rigid dopamine congeners derived from octahydrobenzo[f]quinoline, J. Med. Chem. 19:987–933.PubMedCrossRefGoogle Scholar
  39. Cannon, J. G., Lee, T., Goldman, H. D., Costall, B., and Naylor, R. J., 1977, Cerebral dopamine agonist properties of some 2-aminotetralin derivatives after peripheral and intracerebral administration, J. Med. Chem. 20:1111–1116.PubMedCrossRefGoogle Scholar
  40. Cannon, J. G., Costall, B., Laduron, P. M., Leysen, J. E., and Naylor, R. J., 1978, Effects of some derivatives of 2-aminotetralin on dopamine-sensitive adenylate cyclase and on the binding of [3H]haloperidol to neuroleptic receptors in the rat striatum, Biochem. Pharmacol. 27:1417–1420.PubMedCrossRefGoogle Scholar
  41. Cannon, J. G., Suarez-Gutierrez, C, Lee, T., Long, J. P., Costall, B., Fortune, D. H., and Naylor, R. J., 1979, Rigid congeners of dopamine based on octahydrobenzo[f]quinoline: Peripheral and central effects, J. Med. Chem. 22:341–347.PubMedCrossRefGoogle Scholar
  42. Cannon, J. G., Lee, T., Goldman, H. D., Long, J. P., Flynn, J. R., Verimer, T., Costall, B., and Naylor, R. J., 1980a, Congeners of the β conformer of dopamine derived from cis-and trans-octahydrobenzo[f]quinoline and trans-octahydrobenzo[g]quinoline, J. Med. Chem. 23(1):1–5.CrossRefGoogle Scholar
  43. Cannon, J. G., Lee, T., Hsu, F.-L., Long, J. P., and Flynn, J. R., 1980b, Congeners of the α conformer of dopamine derived from octahydrobenz[h]isoquinoline, J. Med. Chem. 23:502–505.CrossRefGoogle Scholar
  44. Cannon, J. G., Demopoulos, B. J., Long, J. P., Flynn, J. R., and Sharabi, F. M., 1981, Proposed dopaminergic pharmacophore of lergotrile, pergolide, and related ergot alkaloid derivatives, J. Med. Chem. 24:238–240.PubMedCrossRefGoogle Scholar
  45. Cannon, J. G., Perez, J. A., Bhatnagar, R. K., Long, J. P., and Sharabi, F. M., 1982, Conformationally restricted congeners of dopamine derived from 2-aminoindan, J. Med. Chem. 25:1442–1446.PubMedCrossRefGoogle Scholar
  46. Carlsson, A., 1959, The occurrence, distribution and physiological role of catecholamines in the nervous system, Pharmacol. Rev. 11:490–493.PubMedGoogle Scholar
  47. Carlsson, A., Lindqvist, M., Magnusson, T., and Waldeck, B., 1958, On the presence of 3-hydroxytyramine in brain, Science 127:471.PubMedCrossRefGoogle Scholar
  48. Carlsson, A., Fuxe, K., Hamberger, B., and Lindqvist, M., 1966, Biochemical and histochemical studies on the effects of imipramine-like drugs and (+ )-amphetamine on central and peripheral catecholamine neurons, Acta Physiol. Scand. 67:481–497.PubMedCrossRefGoogle Scholar
  49. Cavero, I., Massingham, R., and Lefevre-Borg, F., 1982a, Peripheral dopamine receptors, potential targets for a new class of antihypertensive agents. Part I: Subclassification and functional description, Life Sci. 31:939–948.CrossRefGoogle Scholar
  50. Cavero, I., Massingham, R., and Lefevre-Borg, F., 1982b, Peripheral dopamine receptors, potential targets for a new class of antihypertensive agents. Part II: Sites and mechanisms of action of dopamine receptor agonists, Life Sci. 31:1059–1069.CrossRefGoogle Scholar
  51. Cheng, H. C, Long, J. P., Van Orden, L. S. III, Cannon, J. G., and O’Donnell, J. P., 1976, Dopaminergic activity of some apomorphine analogs, Res. Commun. Chem. Pathol. Pharmacol. 15(1):89–106.PubMedGoogle Scholar
  52. Clapham, J. C, and Hamilton, T. C, 1982, Involvement of presynaptic dopamine receptors in the antihypertensive response to 2-N,N-dimethylamino-5,6-dihydroxy-1,2,3,4-tetrahydronaphthalene (M-7), J. Pharm. Pharmacol. 34:644–647.PubMedCrossRefGoogle Scholar
  53. Clark, B. J., 1979, Cardiovascular effects of ergot alkaloids, J. Pharmacol. (Paris) 10(4):439–453.Google Scholar
  54. Clark, J. T., Smith, E. R., Stefanick, M. L., Arneric, S. P., Long, J. P., and Davidson, J. M., 1982, Effects of a novel dopamine-reeeptor agonist RDS-127 (2-N,N-di-n-propylamino-4,7-dimethoxyindane) on hormone levels and sexual behavior in the male rat, Physiol. Behav. 29(1): 1–6.PubMedCrossRefGoogle Scholar
  55. Clement-Cormier, Y. C, Meyerson, L. R., Phillips, H., and Davis, V. E., 1972, Dopamine receptor topography. Characterization of antagonist requirements of striatal dopaminesensitive adenylate cyclase using protoberberine alkaloids, Biochem. Pharmacol. 28:3123–3129.CrossRefGoogle Scholar
  56. Cools, A. R., and van Rossum, J. M., 1976, Excitation-mediating and inhibition-mediating dopamine receptors: A new coneept towards a better understanding of electrophysiological, biochemical, pharmacological, functional and clinical data, Psychopharmacologia 45:243–254.PubMedCrossRefGoogle Scholar
  57. Corrodi, H., Fuxe, K., and Ungerstedt, U., 1971, Evidence for a new type of dopamine receptor stimulating agent, J. Pharm. Pharmacol. 23:989–991.PubMedCrossRefGoogle Scholar
  58. Corrodi, H., Farnebo, L.-O., Fuxe, K., Hamberger, B., and Ungerstedt, U., 1972, ET495 and brain catecholamine mechanisms: Evidence for stimulation of dopamine receptors, Eur. J. Pharmacol. 20:195–204.PubMedCrossRefGoogle Scholar
  59. Corrodi, H., Fuxe, K., Hokfelt, T., Lidbrink, P., and Ungerstedt, U., 1973, Effect of ergot drugs on central catecholamine neurons: Evidence for a Stimulation of central dopamine neurons, J. Pharm. Pharmacol. 25:409–412.PubMedCrossRefGoogle Scholar
  60. Costall, B., and Naylor, R. J.. 1978, Studies on the dopamine agonist properties of 8-amino-2-methyl-4-(3,4-dihydroxyphenyl)-l,2,3,4-tetrahydroisoquinoline, a derivative of nomifensine, J. Pharm. Pharmacol. 30:514–516.PubMedCrossRefGoogle Scholar
  61. Costall, B., Naylor, R. J., and Pinder, R. M., 1974, Design of agents for Stimulation of neostriatal dopaminergic mechanisms, J. Pharm. Pharmacol. 26:753–762.PubMedCrossRefGoogle Scholar
  62. Costall, B., Naylor, R. J., Cannon, J. G., and Lee, T., 1977, Differential activation by some 2-aminotetralin derivatives of the receptor mechanisms in the nucleus accumbens of rat which mediate hyperactivity and stereotyped biting, Eur. J. Pharmacol. 41:307–319.PubMedCrossRefGoogle Scholar
  63. Costall, B., Lim, S. K., Naylor, R. J., and Cannon, J. G., 1982, On the preferred rotameric conformation for dopamine agoinst action: An illusory quest? J. Pharm. Pharmacol. 34:246–254.PubMedCrossRefGoogle Scholar
  64. Cotzias, G. C, Düby, S., Ginos, J. Z., Steck, A., and Papavasiliou, P. S., 1970, Dopamine analogs for studies of parkinsonism, N. Engl. J. Med. 283(23): 1289.PubMedGoogle Scholar
  65. Creese, I., 1974, Behavioural evidence of dopamine receptor stimulation by piribedil (ET495) and its metabolite S584, Eur. J. Pharmacol. 28:55–58.PubMedCrossRefGoogle Scholar
  66. Creese, I., 1982, Dopamine receptors explained, Trends Neuropharmacol. Sci. 5(2):40–43.CrossRefGoogle Scholar
  67. Creese, I., and Leff, S. E., 1982, Dopamine receptors: A Classification, J. Clin. Psychopharmacol. 2(5):329–335.PubMedCrossRefGoogle Scholar
  68. Creese, I., and Sibley, D. R., 1979, Radioligand binding studies: Evidence for multiple dopamine receptors, Commun. Psychopharmacol. 3:385–395.PubMedGoogle Scholar
  69. Crooks, P. A., and Rosenberg, H. E., 1979, Synthesis of 5-hydroxy-and 5,6-dihydroxyderivatives of spiro[indane-2,2’-pyrrolidine], rigid analogues of tyramine and dopamine respectively, J. Chem. Soc. [Perkin I] 1979:2719–2726.CrossRefGoogle Scholar
  70. Crooks, P. A., Szyndler, R., and Cox, B., 1980, 5,6-and 6,7-Dihydroxyspiro (tetralin-1,3’-pyrrolidine): Conformationally restricted analogs of dopamine, Pharm. Acta Helv. 55(5):134–137.PubMedGoogle Scholar
  71. Dandiya, P. C, Sharma, H. L., Patni, S. K., and Gambhir, R. S., 1975, An evaluation of apomorphine action on dopaminergic receptors, Experientia 31:1441–1443.PubMedCrossRefGoogle Scholar
  72. Dandridge, P. A., Kaiser, C, Brenner, M., Gaitanopoulus, D., David, L. D., Webb, R. L., Foley, J. J., and Sarau, H. M., 1984, Synthesis, resolution, absolute stereochemistry and enantioselectivity of 3’,4’-dihydroxynomifensine, J. Med. Chem. 27:28–35.PubMedCrossRefGoogle Scholar
  73. Davis, A., Roberts, P. J., and Woodruff, G. N., 1978, The uptake and release of [3H]-2-amino-6,7-dihydroxy-l,2,3,4-tetrahydronaphthalene (ADTN) by striatal nerve terminals, Br. J. Pharmacol. 63:183–190.PubMedCrossRefGoogle Scholar
  74. DiChiara, G., and Gessa, G. L., 1978, Pharmacology and neurochemistry of apomorphine, in: Advances in Pharmacology and Chemotherapy, Volume 15 (S. Garattini, A. Goldin, F. Hawking, I. J. Kopin, and R. J. Schnitzer, eds.), Academic Press, New York, pp. 87–160.CrossRefGoogle Scholar
  75. DiChiara, G., Porceddu, M. L., Vargiu, L., and Gessa, G. L., 1978, Stimulation of ‘regulatory’ dopamine receptors by bromocriptine (CB-154), Pharmacology 16(Suppl. 1):135–142.CrossRefGoogle Scholar
  76. Dryer, S. E., Rusterholz, D. B., and Long, J. P., 1980, Biochemical and behavioral actions of 5,8-dimethoxylated aminotetralins, Fed. Proc. 39(3):845.Google Scholar
  77. Enz, H., 1981, Biphasic influence of a 8α-aminoergoline, CU 32-085 on striatal dopamine synthesis and turnover in vivo in the rat, Life Sci. 29:2227–2234.PubMedCrossRefGoogle Scholar
  78. Erhardt, P. W., 1980. Topographical model of the renal vascular dopamine receptor, J. Pharm. Sci. 69(9): 1059–1061.PubMedCrossRefGoogle Scholar
  79. Erhardt, P. W., 1983a, Renal vascular dopamine receptor topography. (E)-2-(3,4-Dihydroxyphenyl) cyclopropylamine and renal vascular dopamine receptor topography. Refinement of a receptor model, Acta Pharm. Suec. [Suppl.] 2:56–64.Google Scholar
  80. Erhardt, P. W., 1983b, Renal vascular dopamine receptor topography: Structure-activity relationships that suggest the presence of a ceiling, in: Dopamine Receptors, American Chemical Society Symposium Series 224 (C. Kaiser and J. W. Kebabian, eds.), American Chemical Society, Washington, pp. 275–280.Google Scholar
  81. Erhardt, P. W., Gorczynski, R. J., and Anderson, W. G., 1979, Conformational analogues of dopamine. Synthesis and pharmacological activity of (E)-and (Z)-2-(3,4-dihydroxyphenyl) cyclopropylamine hydrochlorides, J. Med. Chem. 22:907–911.PubMedCrossRefGoogle Scholar
  82. Ernst, A. M., 1967, Mode of action of apomorphine and dextroamphetamine in gnawing compulsion in rats, Psychopharmacologia 10:316–323.PubMedCrossRefGoogle Scholar
  83. Ernst, A. M., and Smelik, P. G., 1966, Site of action of dopamine and apomorphine on compulsive gnawing behavior in rats, Experientia 22:(12):837–838.PubMedCrossRefGoogle Scholar
  84. Euvrard, C, Ferland, L., DiPaolo, T., Beaulieu, M., Labrie, F., Oberlander, C, Raynaud, J. P., and Boissier, J. R., 1980, Activity of two new potent dopaminergic agonists at the striatal and anterior pituitary levels, Neuropharmacology 19:379–386.PubMedCrossRefGoogle Scholar
  85. Euvrard, C, Ferland, L., Fortin, M., Oberlander, C, Labrie, F., and Boissier, J. R., 1981, Dopaminergic activity of some simplified ergoline derivatives, Drug Dev. Res. 1:151–161.CrossRefGoogle Scholar
  86. Feenstra, M. G. P., Rollema, H., Dijkstra, D., Grol, C. J., Horn, A. S., and Westerink, B. H. C, 1980, Effects of non-catecholic 2-aminotetralin derivatives on dopamine metabolism in rat striatum, Naunyn Schmiedebergs Arch. Pharmacol. 313:213–219.PubMedCrossRefGoogle Scholar
  87. Flueckiger, E., Briner, U., Doepfner, W., Kovacs, E., Marbach, P., and Wagner, H. R., 1978, Prolactin secretion inhibition by a new 8α-amino-ergoline, CH 29-717, Experientia 34:1330–1332.CrossRefGoogle Scholar
  88. Flueckiger, E., Briner, U., Buerki, H. R., Marbach, P., Wagner, H. R., and Doepfner, W., 1979, Two novel prolactin release inhibiting 8α-amino-ergolines, Experientia 35:1677–1678.CrossRefGoogle Scholar
  89. Freedman, S. B., Templeton, W. W., Poat, J. A., and Woodruff, G. N., 1981, The effect of ADTN and some of its derivatives on dopamine receptor binding in rat striatum, Proc. Br. Pharmacol. Soc. 1981:759P–760P.Google Scholar
  90. Freeman, H. S., and McDermed, J. D., 1982, Interaction of chiral agonists with dopamine receptors, in: Chemical Regulation of Biological Mechanisms (A. M. Creighton and S. Turner, eds.), Royal Society of Chemistry, London, pp. 154–166.Google Scholar
  91. Frey, E. A., Cote, T. E., Grewe, C. W., and Kebabian, J. W., 1982, [3H]Spiroperidol identifies a D-2 dopamine receptor inhibiting adenylate cyclase activity in the intermediate lobe of the rat pituitary gland, Endocrinology 110:1897–1904.PubMedCrossRefGoogle Scholar
  92. Fujita, N., Saito, K., Yonchara, N., and Yoshida, H., 1978, Lisuride inhibits 3H-spiroperidol binding to membranes isolated from striatum, Neuropharmacology 17:1089–1091.PubMedCrossRefGoogle Scholar
  93. Fuller, R. W., Clemens, J. A., and Hynes, M. D. III, 1982, Degree of selectivity of presynaptic versus postsynaptic dopamine receptors: Implications for prevention or treatment of tardive dyskinesia, J. Clin. Psychopharmacol. 2(6):371–375.PubMedCrossRefGoogle Scholar
  94. Fuxe, K., Fredholm, B. B., Ögren, S.-O., Agnati, L. F., Hokfelt, T., and Gustafsson, J. Å., 1978, Ergot drugs and central monoaminergic mechanisms: A histochemical, biochemical and behavioral analysis, Fed. Proc. 37:2181–2191.PubMedGoogle Scholar
  95. Geissler, H. E., 1977, 3-[2-(Dipropylamino)ethyl]phenol: A new selective dopaminergic agonist, Arch. Pharm. (Weinheim) 310:749–756.CrossRefGoogle Scholar
  96. Gershanik, O., Heikkila, R. E., and Duvoisin, R. C, 1983, Effects of dopamine depletion on rotational behavior to dopamine agonists, Brain Res. 261:358–360.PubMedCrossRefGoogle Scholar
  97. Gianutsos, G., Morrow, G., Light, S., and Sweeney, M. J., 1982, Dopaminergic properties of nomifensine, Pharmacol. Biochem. Behav. 17:951–954.PubMedCrossRefGoogle Scholar
  98. Giesecke, J., 1980, Refinement of the structure of dopamine hydrochloride, Acta Crystallogr. 36B:178–181.Google Scholar
  99. Geissner-Prettre, C, and Pullman, B., 1975, Molecular-orbital study of the ortho-benzylic long range proton-proton coupling constants 4JHH in biological phenethylamines, J. Mag. Resonance 18:564–568.Google Scholar
  100. Ginos, J. Z., Cotzias, G. C., Tolosa, E., Tang, L. C., and LoMonte, A., 1975, Cholinergic effects of molecular segments of apomorphine and dopaminergic effects of N,N-dialkylated dopamine, J. Med. Chem. 18(12): 1194–1200.PubMedCrossRefGoogle Scholar
  101. Goldberg, L. I., and Kohli, J. D., 1983, Differentiation of dopamine receptors in the periphery, in: Dopamine Receptors, American Chemical Society Symposium Series 224 (C. Kaiser and J. W. Kebabian, eds.), American Chemical Society, Washington, pp. 101–113.Google Scholar
  102. Goldberg, L. I., Sonneville, P. F., and McNay, J. L., 1968, An investigation of the structural requirements for dopamine-like renal vasodilation: Phenylethylamines and apomorphine, J. Pharmacol. Exp. Ther. 163:188–197.PubMedGoogle Scholar
  103. Goldberg, L. I., Volkman, P. H., Kohli, J. D., and Kotake, A. N., 1977, Similarities and differences of dopamine receptors in the renal vascular bed and elsewhere, in: Advances in Biochemical Psychopharmacology, Volume 16 (E. Costa and G. L. Gessa, eds.), Raven Press, New York, pp. 251–256.Google Scholar
  104. Goldberg, L. I., Volkman, P. H., and Kohli, J. D., 1978a, A comparison of the vascular dopamine receptor with other dopamine receptors, Annu. Rev. Pharmacol. Toxicol. 18:57–79.CrossRefGoogle Scholar
  105. Goldberg, L. I., Kohli, J. D., Kotake, A. N., and Volkman, P. H., 1978b, Characteristics of the vascular dopamine receptor: Comparison with other receptors, Fed. Proc. 37:2396–2402.Google Scholar
  106. Goldstein, M., Lew, J. Y., Nakamura, S., Battista, A. F., Lieberman, A., and Fuxe, K., 1978, Dopaminephilic properties of ergot alkaloids, Fed. Proc. 37:2202–2206.PubMedGoogle Scholar
  107. Goldstein, M., Lieberman, A., Lew, J. Y., Asano, T., Rosenfeld, M. R., and Makman, M. H., 1980, Interaction of pergolide with central dopaminergic receptors, Proc. Natl. Acad. Sci. U.S.A. 77:3725–3728.PubMedCrossRefGoogle Scholar
  108. Goodale, D. B., Rusterholz, D. B., Long, J. P., Flynn, J. R., Walsh, B., Cannon, J. G., and Lee, T., 1980, Neurochemical and behavioral evidence for a selective presynaptic dopamine receptor agonist, Science 210:1141–1143.PubMedCrossRefGoogle Scholar
  109. Goodall, McC, 1950a, DihydroxyPhenylalanine and hydroxytryptamine in mammalian suprarenals, Chem. Abstr. 44:8454f.Google Scholar
  110. Goodall, McC, 1950b, Hydroxytyramine in mammalian heart, Nature 166:738.CrossRefGoogle Scholar
  111. Goodall, McC, 1951, Adrenaline and nonadrenaline in mammalian heart and suprarenals, Acta Physiol. Scand. [Suppl] 84:1–51.Google Scholar
  112. Goodall, McC, and Alton, H., 1968, Metabolism of 3-hydroxytyramine (dopamine) in human subjects, Biochem. Pharmacol. 17:905–914.PubMedCrossRefGoogle Scholar
  113. Gorczynski, R. J., Anderson, W. G., Erhardt, P. W., and Stout, D. M., 1979, Analysis of the cardiac stimulant properties of (3,4-dihydroxyphenyl)-cyclopropylamine (ASL-7003) and 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene (A-6,7-DTN), J. Pharmacol. Exp. Ther. 210:252–258.PubMedGoogle Scholar
  114. Gower, A. J., and Marriott, A. S., 1982, Pharmacological evidence for the subClassification of central dopamine receptors in the rat, Br. J. Pharmacol. 77:185–194.PubMedCrossRefGoogle Scholar
  115. Grol, C. J., and Rollema, H., 1977, Conformational analysis of dopamine by the INDO molecular orbital method, J. Pharm. Pharmacol. 19:153–156.CrossRefGoogle Scholar
  116. Gund, P., 1982, Molecular geometry as an indicator of drug activity, Trends Pharmacol. Sci. 3(2):56–59.CrossRefGoogle Scholar
  117. Hacksell, U., Arvidsson, L.-E., Svensson, U., Nilsson, J. L. G., Wikström, H., Lindberg, P., Sanchez, D., Hjorth, S., Carlsson, A., and Paalzow, L., 1981a, Monophenolic 2-(dipropylamino)indans and related compounds: Central dopamine-receptor stimulating activity, J. Med. Chem. 24:429–434.CrossRefGoogle Scholar
  118. Hacksell, U., Arvidsson, L.-E., Svensson, IL, Nilsson, J. L. G., Sanchez, D., Wikström, H., Lindberg, P., Hjorth, S., and Carlsson, A., 1981b, 3-Phenylpiperidines. Central dopamine-autoreceptor stimulating activity, J. Med. Chem. 24:1475–1482.CrossRefGoogle Scholar
  119. Hahn, R. A., 1981, Inhibitory effects of pergolide on peripheral adrenergic neurotransmission in spontaneously hypertensive rats, Life Sci. 29:2501–2509.PubMedCrossRefGoogle Scholar
  120. Hahn, R. A., Wardell, J. R., Jr., Sarau, H. M., and Ridley, P. T., 1982, Characterization of the peripheral and central effects of SK&F 82526, a novel dopamine receptor agonist, J. Pharmacol. Exp. Ther. 223(2):305–313.PubMedGoogle Scholar
  121. Henkel, J. G., Hane, J. T., and Gianutsos, G., 1982, Structure-anti-parkinson activity relationships in the aminoadamantanes. Influence of bridgehead substitution, J. Med. Chem. 25:51–56.PubMedCrossRefGoogle Scholar
  122. Hicks, P. E., and Cannon, J. G., 1979, NN-Dialkyl derivatives of 2-amino-5,6-dihydroxy-1,2,3,4-tetrahydronaphthalene as selective agonists at presynaptic α-adrenoceptors in the rat, J. Pharm. Pharmacol. 31:494–496.PubMedCrossRefGoogle Scholar
  123. Hill, H. F., and Lafferty, J. J., 1975, β-Naphthylmethyl piperazinyl derivatives, U.S. Patent 3,919,230, November 11, 1975.Google Scholar
  124. Hjorth, S., Carlsson, A., Wikström, H., Lindberg, P., Sanchez, D., Hacksell, U., Arvidsson, L.-E., Svensson, U., and Nilsson, J. L. G., 1981, 3-PPP, a new centrally acting DAreceptor agonist with selectivity for autoreceptors, Life Sci. 28:1225–1238.PubMedCrossRefGoogle Scholar
  125. Hjorth, S., Carlsson, A., Clark, D., Svensson, K., Wikström, H., Sanchez, D., Lindberg, P., Hacksell, U., Arvidsson, L.-E., Johansson, A., and Nilsson, J. L. G., 1982, Pharmacological manipulation of central dopamine (DA) autoreceptors-biochemical and behavioral consequences, in: Symposium on Dopamine Receptor Agonists Swedish Academy of Pharmaceutical Sciences, Stockholm, Sweden, April 20-23, 1982.Google Scholar
  126. Hoffmann, I., Ehrhart, G., and Schmitt, K., 1971, 8-Amino-4-phenyl-1,2,3,4-tetrahydroisochinoline, eine neue Gruppe antidepressiver Psyhchopharmaka, Arzneim. Forsch. 21:1045.Google Scholar
  127. Hoffmann, I. S., Naylor, R. J., and Cubeddu, L. X., 1980, Presynaptic effects of 2-aminotetralins on striatal dopaminergic neurons, J. Pharmacol. Exp. Ther. 215:486–493.PubMedGoogle Scholar
  128. Holtz, P., 1939, Dopa decarboxylase, Naturwissenschaften 27:724.CrossRefGoogle Scholar
  129. Holtz, P., 1959, Role of L-DOPA decarboxylase in the biosynthesis of catecholamines in nervous tissue and the adrenal medulla, Pharmacol. Rev. 11:317–329.PubMedGoogle Scholar
  130. Holtz, P., Credner, K., and Koeppe, W., 1942, Die enzymatische Entstehung von Oxytyramin in Organismus und die physiologische Bedeutung der Dopadecarboxylase, Naunyn Schmiedebergs Arch. Exp. Pathol. Pharmakol. 200:356–388.CrossRefGoogle Scholar
  131. Horn, A. S., 1974, The conformation of dopamine at its uptake site; further studies with rigid analogs, J. Pharm. Pharmacol. 26:735–737.PubMedCrossRefGoogle Scholar
  132. Horn, A. S., and Rodgers, J. R., 1980, 2-Amino-6,7-dihydroxytetrahydronaphthalene and the receptor-site preferred conformation of dopamine—a commentary, J. Pharm. Pharmacol. 32:521–524.PubMedCrossRefGoogle Scholar
  133. Hornykiewicz, O., 1971, Dopamine: Its physiology, pharmacology and pathological neurochemistry, in: Biogenic Amines and Physiological Membranes in Drug Therapy, (J. H. Biel and L. G. Abood, eds.) Medicinal Research Series, Vol. 5, Part B, Marcel Dekker, New York, pp. 173–258.Google Scholar
  134. Horowski, R., and Wachtel, H., 1976, Direct dopaminergic action of lisuride hydrogen maleate, an ergot derivative, in mice, Eur. J. Pharmacol. 36:373–383.PubMedCrossRefGoogle Scholar
  135. Humber, L. G., Bruderlein, F. T., and Voith, K., 1975, Neuroleptic agents of the benzoeycloheptapyridoisoquinoline series; a hypothesis on their mode of interaction with the central dopamine receptor, Mol. Pharmacol. 11:833–840.PubMedGoogle Scholar
  136. Humber, L. G., Bruderlein, F. T., Philipp, A. H., Götz, M., and Voith, K., 1979, Mapping the dopamine receptor. 1. Features derived from modifications in ring E of the neuroleptic butaclamol, J. Med. Chem. 22(7):761–767.PubMedCrossRefGoogle Scholar
  137. Ilhan, M., Long, J. P., and Cannon, J. G., 1976, Structure-activity relationship studies of derivatives of aminotetralins and open chain analogs in relation to β and α-agonist activities, Arch. Int. Pharmacodyn. Ther. 223:215–222.PubMedGoogle Scholar
  138. Jacob, J. N., Nichols, D. E., Kohli, J. D., and Glock, D., 1981, Dopamine agonist properties of N-alkyl-4-(3,4-dihydroxyphenyl)-l,2,3,4-tetrahydroisoquinolines, J. Med. Chem. 24:1013–1015.PubMedCrossRefGoogle Scholar
  139. Jaton, A. L., Loew, D. M., and Vigouret, J. M., 1978, A comparison of apomorphine, bromocriptine and Sandoz CM 29-712 (6-methyl-8a-cyanomethylergoline-I) in four different turning models in the rat, Br. J. Pharmacol. 62:395P.PubMedGoogle Scholar
  140. Jaunin, A., Petcher, T. J., and Weber, H. P., 1977, Conformations of some semi-rigid neuroleptic drugs, Part 2; crystal structures of racemic and of (+ )-(S)-octoclothepin [2-chloro-10,ll-dihydro-ll-(4-methylpiperazin-l-yl)dibenzo[b,f]thiepin] and the absolute configuration of the latter, J. Chem. Soc. [Perkin II] 1977:186–190.CrossRefGoogle Scholar
  141. Jenner, P., Taylor, A. R., and Campbell, D. B., 1973, Preliminary investigation of the metabolism of piribedil (ET 495); a new central dopaminergic agonist and potential antiparkinsonism agent, J. Pharm. Pharmacol. 25:749–750.PubMedCrossRefGoogle Scholar
  142. Jenner, P., Clow, A., Reavill, C, Theodorou, A., and Marsden, C. D., 1980, Stereoselective actions of substituted benzemide drugs on cerebral dopamine mechanisms, J. Pharm. Pharmacol. 32:39–44.PubMedCrossRefGoogle Scholar
  143. Kaiser, C, 1983, Stereoisomeric probes of the dopamine receptor, in: Dopamine Receptors, American Chemical Society Symposium Series 224 (C. Kaiser and J. W. Kebabian, eds.), American Chemical Society, Washington, pp. 223–246.Google Scholar
  144. Kaiser, C, and Zirkle, C. L., 1983, Enantioselectivity of tricyclic neuroleptics, unpublished observations.Google Scholar
  145. Kaiser, C, Dandridge, P. A., Garvey, E., Hahn, R. A., Sarau, H. M., Setler, P. E., Bass, L. S., and Clardy, J., 1982, Absolute stereochemistry and dopaminergic activity of enantiomers of 2,3,4,5-tetrahydro-7,8-dihydroxy-l-phenyl-lH-3-benzazepine, J. Med. Chem. 25:697–703.PubMedCrossRefGoogle Scholar
  146. Kaiser, C, Dandridge, P. A., Weinstock, J., Ackerman, D. M., Sarau, H. M., Setler, P. E., Webb, R. L., Horodniak, J. W., and Matz, E. D., 1983, Stereoselectivity of some new dopamine receptor agonists, Acta Pharm. Suec. [Suppl.] 2:132–150.Google Scholar
  147. Kebabian, J. W., 1978, Multiple classes of dopamine receptors in mammalian central nervous system: The involvement of dopamine-sensitive adenylyl cyclase, Life Sci. 23:479–484.PubMedCrossRefGoogle Scholar
  148. Kebabian, J. W., and Calne, D. B., 1979, Multiple receptors for dopamine, Nature 277:93–96.PubMedCrossRefGoogle Scholar
  149. Kehr, W., 1977, Effect of lisuride and other ergot derivatives on monoaminergic mechanisms in rat brain, Eur. J. Pharmacol. 41:261–273.PubMedCrossRefGoogle Scholar
  150. Kohli, J. D., and Goldberg, L. I., 1980, Effects of 3’-4”-dihydroxynomifensine on the dopamine vascular receptor, J. Pharm. Pharmacol. 32:225–226.PubMedCrossRefGoogle Scholar
  151. Kohli, J. D., Goldberg, L. I., and Nand, N., 1979, l-Aminomethyl isochromans: New vascular dopamine agonists, Pharmacologist 21:202.Google Scholar
  152. Kohli, J. D., Weder, A. B., Goldberg, L. I., and Ginos, J. Z., 1980, Structure activity relationships of N-substituted dopamine derivatives as agonists of the dopamine vascular and other cardiovascular receptors, J. Pharmacol. Exp. Ther. 213:370–374.PubMedGoogle Scholar
  153. Kohli, J. D., Goldberg, L. I., and McDermed, J. D., 1982, Modification of cardiovascular actions of 2-amino-5,6-dihydroxytetralin by N,N-di-n-propyl substitution, Eur. J. Pharmacol. 81:293–299.PubMedCrossRefGoogle Scholar
  154. Ku, T., Bondinell, W. E., Zirkle, C. L., and Setler, P. E., 1983, Aporphine derivatives with central dopamine receptor antagonist activity, unpublished results.Google Scholar
  155. Lafferty, J. J., Kaiser, C, Zirkle, C. L., Hill, H. F., and Setler, P. E., 1983, Structureactivity relationship studies of the dopaminergic piribedil, unpublished observations.Google Scholar
  156. Lal, S., Sourkes, T. L., Missala, K., and Belendiuk, G., 1972, Effects of apormorphine and emetine alkaloids on central dopaminergic mechanisms in rats, Eur. J. Pharmacol. 20:71–79.PubMedCrossRefGoogle Scholar
  157. Law, S.-J., Morgan, J. M., Masten, L. W., Borne, R. F., Arana, G. W., Kula, N. S., and Baldessarini, R. J., 1982, Rigid analogues of dopamine: Synthesis and interaction of 6-exo-and 6-endo-(3’,4’-dihydroxyphenyl)-2-aza-bicyclo[2.2.2]octanes with dopamine uptake sites and receptors, J. Med Chem. 25:213–216.PubMedCrossRefGoogle Scholar
  158. Lemberger, L., and Crabtree, R. E., 1979, Pharmacologic effects in man of a potent, long acting dopamine receptor agonist, Science 205:1151–1153.PubMedCrossRefGoogle Scholar
  159. Lew, J. Y., Nakamura, S., Battista, A. F., and Goldstein, M., 1979, Dopamine agonist potencies of ergolines, Commun. Psychopharmacol. 3:179–183.PubMedGoogle Scholar
  160. Lichtensteiger, W., Hefti, F., Felix, D., Huwyler, T., Melamed, E., and Schlumpf, M., 1982, Stimulation of nigrostriatal dopamine neurones by nicotine, Neuropharmacology 21:963–968.PubMedCrossRefGoogle Scholar
  161. Liebowitz, M., Lieberman, A., Goldstein, M., Neophytides, A., Kupersmith, M., Gopinathan, G., and Mehl, S.. 1981, Cardiac effects of pergolide, Clin. Pharmacol. Ther. 30(6):718–723.CrossRefGoogle Scholar
  162. Loozen, H. J. J., Brands, F. T. L., and de Winter, M. S., 1982, An approach to the synthesis of [2]benzopyrano[3,4-c]pyrroles; alternative dopaminergic molecules, Rec. Trav. Chem. Pays Bas 101(9):298–310.CrossRefGoogle Scholar
  163. Maixner, W., Long, J. P., Wright, C. B., Diana, J. N., Cannon, J. G., and Hake, H. L., 1981, Peripheral vascular effects of a new dopamine analog: 5,6-dihydroxy-2-methylaminotetralin (M-8), J. Cardiovasc. Pharmacol. 3:381–389.PubMedCrossRefGoogle Scholar
  164. Mannich, C, and Jacobsohn, W., 1910, Uber Oxyphenyl-alkylamine und Dioxyphenyl-alkylamine, Chem. Ber. 1:189–197.Google Scholar
  165. Marek, K. L., and Roth, R. H.. 1980, Ergot alkaloids: Interaction with presynaptic dopamine receptors in the neostriatum and olfactory tubercles, Eur. J. Pharmacol. 62:137–146.PubMedCrossRefGoogle Scholar
  166. Markstein, R., Herrling, P. L., Bürki, H. R., Asper, H., and Ruch, W., 1978, The effect of bromocriptine on rat striatal adenylate cyclase and rat brain monoamine metabolism, J. Neurochem. 31:1163–1172.PubMedCrossRefGoogle Scholar
  167. Martin, G. E., Williams, M., and Haubrich, D. R., 1982a, A pharmacological comparison of 6,7-dihydroxy-2-dimethylaminotetralin (TL-99) and N-n-propyl-3-(3-hydroxyphenyl) piperidine (3-PPP) with selected dopamine agonists, J. Pharmacol. Exp. Ther. 223(2):298–304.Google Scholar
  168. Martin, G. E., Williams, M., Clineschmidt, B. V., Yarbrough, G. G., Jones, J. H., and Haubrich, D. R., 1982b, Potent dopamine agonist activity of a novel ergoline, 6-ethyl-9-oxaergoline (EOE), Life Sci. 30:1847–1856.CrossRefGoogle Scholar
  169. McDermed, J. D., and Freeman, H. S., 1982, Interactions of chiral agonists of the 2-aminotetralin series with dopamine receptors, in: Symposium on Dopamine Receptor Agonists, Swedish Academy of Pharmaceutical Sciences, Stockholm, Sweden, April 20-23, 1982, Swedish Academy of Pharmaceutical Sciences, Stockholm.Google Scholar
  170. McDermed, J.D.,and Miller, R. J., 1979, Antipsychotics and dopamine agonists, Annu.Rep. Med. Chem. 14:12–21.CrossRefGoogle Scholar
  171. McDermed, J. D., McKenzie, G. M., and Phillips, A. P., 1975, Synthesis and pharmacology of some 2-aminotetralins. Dopamine receptor agonists, J. Med Chem. 18(4):362–367.PubMedCrossRefGoogle Scholar
  172. McDermed, J. D., McKenzie, G. M., and Freeman, H. S., 1976, Synthesis and dopaminergic activity of (±)-, ( + ), and (-)-2-dipropylamino-5-hydroxy-1,2,3,4-tetrahydronaphthalene, J. Med Chem. 19:547–549.PubMedCrossRefGoogle Scholar
  173. McDermed, J. D., Freeman, H. S., and Ferris, R. M., 1979, Enantioselectivity in the binding of ( + )-and (-)-2-amino-6,7-dihydroxy-l,2,3,4-tetrahydronaphthalene and related agonists to dopamine receptors, in: Catecholamines: Basic and Clinical Frontiers (E. Usdin, I. J. Kopin, and J. D. Barchas, eds.), Pergamon Press, New York, pp. 568–570.Google Scholar
  174. McKenzie, G. M., and Szerb, J. C., 1968, The effect of dihydroxyphenylalanine, pheniprazine, and dextroamphetamine on the in vivo release of dopamine nucleus, J. Pharmacol. 162:302–308.Google Scholar
  175. McNay, J. L., and Goldberg, L. I., 1966, Comparison of the effects of dopamine, isoproterenol, norepinephrine and bradykinin on canine renal and femoral blood flow, J. Pharmacol. Exp. Ther. 151:23–31.PubMedGoogle Scholar
  176. Metysova, J., and Protiva, M., 1975, thiepin series, Act. Nerv. Super. 17:218–219.Google Scholar
  177. Miller, D. D., 1978, Steric aspects of dopaminergic drugs, Fed. Proc. 37:2392–2395.PubMedGoogle Scholar
  178. Miller, R. J., and Iversen, L. L., 1974, Stimulation of dopamine-sensitive adenylate cyclase in homogenates of rat striatum by a metabolite of piribedil (ET 495), Naunyn Schiedebergs Arch. Pharmacol. 282:213–216.CrossRefGoogle Scholar
  179. Miller, R., Horn, A., Iversen, L., and Pinder, R., 1974, Effects of dopamine-like drugs on rat striatal adenyl cyclase have implications for CNS dopamine receptor topography, Nature 250:238–241.PubMedCrossRefGoogle Scholar
  180. Miller, R. J., Kelly, P. H., and Neumeyer, J. L., 1976, Aporphines. 15. Action of aporphine alkaloids on dopaminergic mechanisms in rat brain, Eur. J. Pharmacol. 35:77–83.PubMedCrossRefGoogle Scholar
  181. Montastruc, J. L., and Montastruc, P., 1981, Antihypertensive action of bromocriptine in neurogenic hypertensive dogs, Arch. Int. Pharmacodyn. Ther. 252:210–218.PubMedGoogle Scholar
  182. Moragues, J., Prieto, J., Spickett, R. G. W., Vega, A., Salazar, W., and Roberts, D. J., 1980, Dopaminergic activity in a series of N-substituted 2-aminopyramidines, Farmaco Ed. Sci. 35:951–964.Google Scholar
  183. Nédélec, L., Dumont, C, Oberlander, C, Frechet, D., Laurent, J., and Boissier, J. R., 1978, Syntheses et etude de l’activite dopaminergique de derives de la di(phenethyl)amine, Eur. J. Med. Chem. 13(6):553–563.Google Scholar
  184. Nédélec, L., Guillaume, J., Oberlander, C, Euvrard, C, Labrie, F., Allais, A., and Boissier, J. R., 1980, Synthesis and stimulant dopaminergic activity of 4-(piperidin-3-yl) and 4-(l,2,5,6-tetrahydro-3-pyridinyl)-1H-indoles, Med. Chem. Symp. Abstr. Spain 1980:P168.Google Scholar
  185. Neumeyer, J. L., McCarthy, M., Battista, S. P., Rosenberg, F. J., and Teiger, D. G., 1973a, Aporphines, 9. Synthesis and pharmacological evaluation of (α)-9,10-dihydroxyaporphine [(α)-isoapomorphine],(+)-, (-)-, and (α)-l,2-dihydroxyaporphine, and (+)-1,2,9,10-tetrahydroxyaporphine, J. Med Chem. 16:1228–1233.CrossRefGoogle Scholar
  186. Neumeyer, J. L., Neustadt, B. R., Oh, K. H., Weinhardt, K. K., Boyce, C. B., Rosenberg, F. J., and Teiger, D. G., 1973b, Aporphines. 8. Total synthesis and pharmacological evaluation of (α)-apomorphine, (α)-apocodeine, (α)-N-n-propylnorapomorphine and (α)-N-n-propylnorapocodeine, J. Med. Chem. 16:1223–1228.CrossRefGoogle Scholar
  187. Neumeyer, J. L., Granchelli, F. E., Fuxe, K., Ungerstedt, U., and Corrodi, H., 1974, Aporphines. 11. Synthesis and dopaminergic activity of monohydroxyaporphines. Total synthesis of (α)-11-hydroxyaporphine, (α)-11-hydroxynoraporphine, and (α)-11-hydroxy-N-n-propylnoraporphine, J. Med. Chem. 17(10): 1090–1095.PubMedCrossRefGoogle Scholar
  188. Neumeyer, J. L., Lal, S., and Baldessarini, R. J., 1981a, Historical highlights of the chemistry, pharmacology, and early clinical uses of apormorphine, in: Apomorphine and Other Dopaminomimetics, Volume 1: Basic Pharmacology (G. L., Gessa and G. U., Corsini, eds.), Raven Press, New York, pp. 1–17.Google Scholar
  189. Neumeyer, J. L., Law, S. J., and Lamont, J. S., 1981b, Apomorphine and related aporphines as probes of the dopamine receptor, in: Apomorphine and Other Dopaminomimetics, Volume 1: Basic Pharmacology (G. L. Gessa and G. U. Corsini, eds.), Raven Press, New York, pp. 209–218.Google Scholar
  190. Neumeyer, J. L., Arana, G. W., Law, S.-J., Lamont, J. S., Kula, N. S., and Baldessarini, R. J., 1981c, Aporphines. 36. Dopamine receptor interactions of trihydroxyaporphines. Synthesis, radioreceptor binding, and striatal adenylate cyclase Stimulation of 2,10,11-trihydroxyaporphines in comparison with other hydroxylated aporphines, J. Med. Chem. 24:1440–1445.CrossRefGoogle Scholar
  191. Neumeyer, J. L., Arana, G. W., Ram, V. J., and Baldessarini, R. J., 1983, Synthesis and structure-activity relationships of aporphines at central dopamine receptors, Acta Pharm. Suec. [Suppl.] 2:11–24.Google Scholar
  192. Nichols, D. E., 1976, Structural correlation between apomorphine and LSD: Involvement of dopamine as well as Serotonin in the actions of hallucinogens. J. Theor. Biol. 59:167–177.PubMedCrossRefGoogle Scholar
  193. Nichols, D. E., 1983, The development of novel dopamine agonists, in: Dopamine Receptors, American Chemical Society Symposium Series 224 (C. Kaiser and J. W. Kebabian, eds.), American Chemical Society, Washington, pp. 201–218.Google Scholar
  194. Nichols, D. E., Toth, J. E., Kohli, J. D., and Kotake, C. K., 1978, Dihydroxy-9-amino-9,10-dihydrophenenthrene, a rigid congener of dopamine and isoapomorphine, J. Med. Chem. 21:395–398.PubMedCrossRefGoogle Scholar
  195. Nilsson, J. L. G., and Carlsson, A., 1982, Dopamine-receptor agonist with apparent selectivity for autoreceptors: A new principle for antipsychotic action?, Trends Pharmacol. Sci. 3(8):322–325.CrossRefGoogle Scholar
  196. O’Donnell, J. P., Azzaro, A. J., and Urquilla, P. R., 1979, 2-(3,4-Dihydroxybenzyl)-2-imidazoline (DBHI): An analogue of dopamine, Res. Commun. Chem. Pathol. Pharmacol. 26(2):243–251.PubMedGoogle Scholar
  197. Offermeier, J., and van Rouyen, J. M., 1982, Is it possible to integrate dopamine receptor terminology?, Trends Pharmacol. Sci. 3(8):326–328.CrossRefGoogle Scholar
  198. Olson, G. L., Cheung, H.-C, Morgan, K. D., Blount, J. F., Todaro, L., Berger, L., Davidson, A. B., and Boff, E., 1981, A dopamine receptor model and its application in the design of a new class of rigid pyrrolo[2,3-g]isoquinoline antipsychotics, J. Med. Chem. 24:1026–1024.PubMedCrossRefGoogle Scholar
  199. Parli, C. J., Schmidt, B., and Shaar, C. J., 1978, Metabolism of lergotrile to 13-hydroxy lergotrile, a potent inhibitor of prolactin release in vitro, Biochem. Pharmacol. 27:1405–1408.PubMedCrossRefGoogle Scholar
  200. Pendieton, R. G., Samler, L., Kaiser, C, and Ridley, P. T., 1978, Studies on renal dopamine receptors with a new agonist, Eur. J. Pharmacol. 51:19–28.CrossRefGoogle Scholar
  201. Petcher, T. J., Schmutz, J., Weber, H. P., and White, T. G., 1975, Chirality of (+)-octoclothepin, a stereospeeifie neuroleptic agent, Experientia 31:1389–1390.PubMedCrossRefGoogle Scholar
  202. Philipp, A. H., Humber, L. G.. and Voith, K., 1979, Mapping of the dopamine receptor. 2. Features derived from modifications in the rings A/B region of the neuroleptic butaclamol, J. Med. Chem. 22(7):768–773.PubMedCrossRefGoogle Scholar
  203. Pinder, R. M., Buxton, D. A., and Green, D. M., 1971, On the dopamine-like action of apomorphine, J. Pharm. Pharmacol. 23:995–996.PubMedCrossRefGoogle Scholar
  204. Pinder, R. M., Buxton, D. A., and Woodruff, G. N., 1972, On apomorphine and dopamine receptors, J. Pharm. Pharmacol. 24:903–904.PubMedCrossRefGoogle Scholar
  205. Poat, J. A., Woodruff, G. N., and Watling, K. J., 1978, Direct effect of a nomifensine derivative on dopamine receptors, J. Pharm. Pharmacol. 30:495–49.PubMedCrossRefGoogle Scholar
  206. Poignant, J. C, Gressier, H., Petitjean, M., Regnier, G., and Canevari, R., 1975, A new central direct dopaminergic stimulant: 1-(Coumaran-5-ylmethyl)-4-(2-thiazolyl) piperazine hydrochloride (S 3608), Experientia 31(19):1204–1205.PubMedCrossRefGoogle Scholar
  207. Rabey, J. M., Passeltiner, P., Markey, K., Asano, T., and Goldstein, M., 1981, Stimulation of pre-and postsynaptic dopamine receptors by an ergoline and by a partial ergoline, Brain Res. 225:347–35.PubMedCrossRefGoogle Scholar
  208. Remy, D. C., and Martin, G. E., 1980, Antipsychotic agents and dopamine agonists, Annu. Rep. Med. Chem. 15:12–2.CrossRefGoogle Scholar
  209. Riffee, W. H., Wilcox, R. E., Smith, R. V., Davis, P. J., and Brubaker, A., 1982, Inhibition of R(-)-apomorphine-induced stereotypie cage-climbing behavior in mice by S-(+)-apomorphine, in: Advances in the Biosciences, Volume 37, Advances in Dopamine Research (M. Kohsaka, T. Shohmori, T. Tsukada, and G. N. Woodruff, eds.), Pergamon Press, London, pp. 357–362.Google Scholar
  210. Rusterholz, D. B., Long, J. P., Flynn, J. R., Cannon, J. G., Lee, T., Pease, J. P., Clemens, J. A., Wong, D. T., and Bymaster, F. P., 1979, Dopaminergic effects of non-hydroxylated rigid analogs of apomorphine, Eur. J. Pharmacol. 55:73–8.PubMedCrossRefGoogle Scholar
  211. Saari, W. S., King, S. W., and Lotti, V. J., 1973, Synthesis and biological activity of (6aS)-10,11-dihydroxy aporphine, the optical antipode of apomorphine, J. Med. Chem. 16:171–17.PubMedCrossRefGoogle Scholar
  212. Saari, W. S., King, S. W., Lotti, V. J., and Scriabine, A., 1974, Synthesis and biological activity of some aporphine derivatives related to apomorphine, J. Med. Chem. 17(10):1086–1090.PubMedCrossRefGoogle Scholar
  213. Scharfenberg, P., and Sauer, J., 1980, Biological response as a function of conformation, chirality and electronic characteristics: A catecholamine study, Int. J. Quantum Chem. 18:1309–133.CrossRefGoogle Scholar
  214. Schechter, M. D., and Concannon, J. T., 1982, Dopaminergic activity of quipazine, Pharmacol. Biochem. Behav. 17:393–39.PubMedCrossRefGoogle Scholar
  215. Schoenfeld, R. I., Neumeyer, J. L., Defeldecker, W., and Roffler-Tarlov, S., 1975, Comparison of structural and stereoisomers of apomorphine on stereotyped sniffing behavior of the rat, Eur. J. Pharmacol. 30:63–6.PubMedCrossRefGoogle Scholar
  216. Schorderet, M., McDermed, J., and Magistretti, P., 1978, Dopamine receptors and cyclic AMP in rabbit retina—a pharmacological and stereochemical analysis using semi-rigid analogs of dopamine (aminotetralins) and thioxanthene isomers, J. Physiol. (Paris) 74:509–513.Google Scholar
  217. Schuster, D. I., Katerinopoulos, H. E., Holden, W. L., Narula, A. P. S., Libes, R. B., and Murphy, R. B., 1982, Synthesis and dopamine receptor binding of exo-and endo-2-amino-6,7-dihydroxybenzonorbornene, rigid analogues of 2-amino-6,7-dihydroxytetrahydronaphthalene, J. Med. Chem. 25:850–85.PubMedCrossRefGoogle Scholar
  218. Seeman, P., 1980, Brain dopamine receptors, Pharmacol. Rev. 32:229–31.PubMedGoogle Scholar
  219. Seeman, P., 1982, Nomenclature of central and peripheral dopaminergic sites and receptors, Biochem. Pharmacol. 31(16):2563–2568.PubMedCrossRefGoogle Scholar
  220. Seeman, P., Tedesco, J. L., Lee, T., Chau-Wong, M., Muller, P., Bowles, J., Whitaker, P. M., McManus, C, Titeler, M., Weinreich, P., Friend, W. C, and Brown, G. M., 1978a, Dopamine receptors in the central nervous system, Fed. Proc. 37:130–13.Google Scholar
  221. Seeman, P., Titeler, M., Tedesco, J., Weinreich, P., and Sinclair, D., 1978b, in: Advances in Biochemical Psychopharmacology, Volume 19 (P. J. Roberts, G. N. Woodruff, and L. L. Iversen, eds.), Raven Press, New York, pp. 167–176.Google Scholar
  222. Seidlova, V., and Protiva, M., 1967, Neutotrope und psychotrope Substanzen. X. Uber die Synthese von 10-(4-Methylpiperazino)-10,11-dihydro-5H-dibenzo-[a,d]cyclohepten und seinen 8-Chlorderivat, Collect. Czech. Chem. Commun. 32:1747–1758.Google Scholar
  223. Seiler, M. P., and Markstein, R., 1982, Further characterization of the structural requirements for agonists at the striatal dopamine D-1 receptor. Studies with a series of monohydroxyaminotetralins on dopamine-sensitive adenylate cyclase and comparison with dopamine receptor binding, Mol. Pharmacol. 22:281–28.PubMedGoogle Scholar
  224. Setler, P. E., Sarau, H. M., Zirkle, C. L., and Saunders, H. L., 1978a, The central effects of a novel dopamine agonist, Eur. J. Pharmacol. 50:419–43.CrossRefGoogle Scholar
  225. Setler, P. E., Malesky, M., McDevitt, J., and Turner, K., 1978b, Rotation produced by administration of dopamine and related substances directly into the supersensitive caudate nucleus, Life Sci. 23:1277–128.CrossRefGoogle Scholar
  226. Seyfried, C A., and Fuxe, K., 1982, Neuropharmacological and neurochemical effects of 3-[4-(4-phenyl-1,2,3,6-tetrahydropyridyl-1)-butyl]indole (EMD 23448) a new, long-acting dopamine agonist, Arzneim. Forsch. 32(11):892–893.Google Scholar
  227. Sharabi, F. M., Long, J. P., Cannon, J. G., and Hatheway, G. J., 1976a, Inhibition of the sympathetic nervous system by a series of heteroeyclic congeners of dopamine, J. Pharmacol. Exp. Ther. 199:630–63.Google Scholar
  228. Sharabi, F. M., Long, J. P., and Cannon, J. G., 1976b, Hypotensive effect induced by a cyclic dopamine analog, trans-4-methyl-7,8-dihydroxy-1,2,3,4,4a,5,6,10b-octahydrobenzo[f] quinoline, J. Pharm. Sci. 67(11): 1639–1641.CrossRefGoogle Scholar
  229. Sheppard, H., and Burghardt, C. R., 1974, The dopamine-sensitive adenylate cyclase of rat caudate nucleus. Comparison with the isoproterenol-sensitive (beta receptor system) of rat erythrocytes in responses to dopamine derivatives, Mol. Pharmacol. 10:721–72.Google Scholar
  230. Sheppard, H., and Burghardt, C. R., 1978, The dopamine-sensitive adenylate cyclase of the rat caudate nucleus. 3. The effect of aporphines and protoberberines, Biochem. Pharmacol. 27:1113–111.PubMedCrossRefGoogle Scholar
  231. Sheppard, H., Burghardt, C. R., and Long, J. P., 1978, The effect of dihydroxy-2-aminotetralins (DATS) on dopamine and beta type adenylate cyclases, Res. Commun. Chem. Pathol. Pharmacol. 19(2):213–224.PubMedGoogle Scholar
  232. Shorr, R. G. L., Lefkowitz, R. J., and Caron, M. G., 1981, Purification of the β-adrenergic receptor. Identification of the hormone binding subunit, J. Biol. Chem. 256:5820–582.PubMedGoogle Scholar
  233. Shorr, R. G. L., Heald, S. L., Jeffs, P. W., Lavin, T. M., Strohsacker, M. W., Lefkowitz, R. J., and Caron, M. G., 1982a, The β-adrenergic receptor: Rapid purification and covalent labeling by photoaffinity crosslinking, Proc. Natl. Acad. Sci. U.S.A. 79(9):2778–2782.CrossRefGoogle Scholar
  234. Shorr, R. G. L., Strohsacker, M. W., Lavin, T. N., Lefkowitz, R. J., and Caron, M. G., 1982b, The β1-adrenergic receptor of the turkey erythrocyte. Molecule heterogeneity revealed by purification and photoaffinity labeling, J. Biol. Chem. 257(20): 12341–12350.Google Scholar
  235. Sindelar, R. D., Mott, J., Barfknecht, C. F., Arneric, S. P., Flynn, J. R., Long, J. P., and Bhatnagar, R. K., 1982, 2-Amino-4,7-dimethoxyindan derivatives: Synthesis and assessment of dopaminergic and cardiovascular actions, J. Med. Chem. 25:858–86.PubMedCrossRefGoogle Scholar
  236. Smythies, J. R., 1981, An hypothesis of the molecular structure of the dopamine receptor, Med. Hypotheses 7:1449–145.PubMedCrossRefGoogle Scholar
  237. Sokoloff, P., Martres, M. P., and Schwartz, J. C, 1980a, Three classes of dopamine receptor (D-2, D-3, D-4) identified by binding studies with 3H-apomorphine and 3H-domperidone, Naunyn Schmiedebergs Arch. Pharmacol. 315:89–10.CrossRefGoogle Scholar
  238. Sokoloff, P., Martres, M.-P., and Schwartz, J.-C, 1980b, 3H-Apomorphine labels both dopamine postsynaptic receptors and autoreceptors, Nature 288:283–28.CrossRefGoogle Scholar
  239. Stoof, J. C, Horn, A. S., and Mulder, A. H., 1980, Simultaneous demonstration of the activation of presynaptic dopamine autoreceptors and postsynaptic dopamine receptors in vitro by N,N-dipropyl-5,6-ADTN, Brain Res. 196:276–28.Google Scholar
  240. Struyker-Boudier, H., Teppema, L., Cools, A., and van Rossum, J., 1975, (3,4-Dihydroxyphenylamino)-2-imidazoline (DPI), a new potent agonist at dopamine receptors mediating neuronal inhibition, J. Pharm. Pharmacol. 27:882–88.PubMedCrossRefGoogle Scholar
  241. Sweet, C. S., Gaul, S. L., Ludden, C. T., and Britt, P. M., 1982, Cardiovascular effects of 6-ethyl-9-oxaergoline (EOE), a potent dopamine agonist, Fed. Proc. 41(5): 1587.Google Scholar
  242. Tedesco, J. L., Seeman, P., and McDermed, J. D., 1979, The conformation of dopamine at its receptor: Binding of monohydroxy-2-aminotetralin enantiomers and positional isomers, Mol. Pharmacol. 16:369–38.PubMedGoogle Scholar
  243. Tolosa, E. S., Cotzias, G. C, Burckhardt, P. G., Tang, L. C, and Dahl, K. E., 1977, The dopaminergic and antidopaminergic effects of some aporphines, Exp. Neurol. 55:56–6.PubMedCrossRefGoogle Scholar
  244. Tsuruta, K., Frey, E. A., Grewe, C. W., Cote, T. E., Eskay, R. L., and Kebabian, J. W., 1981, Evidence that LY-141865 specifically stimulates the D-2 dopamine receptor, Nature 292:463–46.PubMedCrossRefGoogle Scholar
  245. van Beek, M. C, and Timmerman, H., 1974, Some benzhydryl derivatives as central dopamine receptor stimulating agents, J. Pharm. Pharmacol. 26:57–5.PubMedCrossRefGoogle Scholar
  246. van der Zee, P., Koger, H. S., Gootjes, J., and Hespe, W., 1980, Aryl 1,4-dialk(en)ylpiperazines as selective and very potent inhibitors of dopamine uptake, Eur. J. Med. Chem. 15(4):363–370.Google Scholar
  247. Van Oene, J. C, Houwing, H. A., and Horn, A. S., 1982a, The purported dopamine agonist (3,4-dihydroxyphenylimino)-2-imidazoline (DPI) acts as a nonselective α-adrenoceptor agonist in inducing hypertension, hypomotility and hypothermia in the rat, Eur. J. Pharmacol. 85:69–7.CrossRefGoogle Scholar
  248. Van Oene, J. C, Houwing, H. A., and Horn, A. S., 1982b, Evidence that the purported dopaminergic agonist (3,4-dihydroxyphenylimino)-2-imidazoline (DPI) may reduce rat striatal dopamine turnover by an α2-adrenergic mechanism, Eur. J. Pharmacol. 81:75–8.CrossRefGoogle Scholar
  249. Verimer, T., Long, J. P., Rusterholz, D. R., Flynn, J. R., Cannon, J. G., and Lee, T., 1980, Dopaminergic activity of cis-trans isomers of benzyhydro[f]quinoline analogs, Eur. J. Pharmacol. 64:271–27.PubMedCrossRefGoogle Scholar
  250. Volkman, P. H., Kohli, J. D., Goldberg, L. I., Cannon, J. G., and Lee, T., 1977, Conformational requirements for dopamine-induced vasodilation, Proc. Natl. Acad. Sci. U.S.A. 74:3602–360.PubMedCrossRefGoogle Scholar
  251. Wardell, J. R., Jr., Hahn, R. A., and Stefankiewicz, J. S., 1979, in: Peripheral Dopaminergic Receptors (J. Imbs and J. Schwartz, eds.), Pergamon Press, New York, pp. 389–399.Google Scholar
  252. Watling, K. J., 1982, Dopamine receptors and 3-PPP, a P-ossible P-referential P-resynaptic agonist? Trends Pharmacol. Sci. 3(6):232.CrossRefGoogle Scholar
  253. Watling, K. J., and Williams, M., 1982, Interaction of the putative dopamine autoreeeptor agonists, 3-PPP and TL-99, with the dopamine-sensitive adenylate cyclase of carp retina, Eur. J. Pharmacol. 77:321–32.PubMedCrossRefGoogle Scholar
  254. Weinstock, J., Wilson, J. W., Ladd, D. L., Brush, C. K., Pfeiffer, F. R., Kuo, G. Y., Holden, K. G., Yim, N. C. F., Hahn, R. A., Wardell, J. R., Jr., Tobia, A. J., Setler, P. E., Sarau, H. M., and Ridley, P. T., 1980, Separation of potent central and renal dopamine agonist activity of substituted 6-chloro-2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepines, J. Med. Chem. 23:973–97.PubMedCrossRefGoogle Scholar
  255. Weinstock, J., Wilson, J. W., Ladd, D. L., Brenner, M., Ackerman, D. M., Blumberg, A. L., Hahn, R. A., Hieble, J. P., Sarau, H. M., and Wiebelhaus, V. D., 1983, Dopaminergic benzazepines with divergent cardiovascular profiles, in: Dopamine Receptors, American Chemical Society Symposium Series 224 (C. Kaiser and J. W. Kebabian, eds.), American Chemical Society, Washington, pp. 157–169.Google Scholar
  256. Weir, R. L., Hruska, R. E., and Silbergeld, E. K., 1981, Binding of antiparkinsonian ergot derivatives to the dopamine receptor, Psychopharmacology 75:119–123.PubMedCrossRefGoogle Scholar
  257. Wikström, H., Sanchez, D., Lindberg, P., Arvidsson, L.-E., Hacksell, U., Johansson, A., Nilsson, J. L. G., Hjorth, S., and Carlsson, A., 1982, Monophenolic octahydrobenzo[ f]quinolines: Central dopamine-and serotonin-receptor stimulating activity, J. Med. Chem. 25:925–93.PubMedCrossRefGoogle Scholar
  258. Wilk, S., Mizoguchi, H., and Orlowski, M., 1978, Gamma-glutamyl dopa: A kidney specific dopamine precursor, J. Pharmacol. Exp. Ther. 206(1):227–232.PubMedGoogle Scholar
  259. Wilson, J. W., 1978, 3-Benzazepine derivatives with peripheral and central dopaminergic properties, in: Program and Abstracts, 16th National Medicinal Chemical Symposium of the American Chemical Society, Kalamazoo, Michigan, June 18-22,1978, American Chemical Society, Washington, p. 155.Google Scholar
  260. Woodman, O. L., Medgett, I. C, Lang, W. J., and Rand, M. J., 1981, Agonist actions of DPI [2-(3,4-dihydroxyphenylimino)-imidazolidine] on α-adrenoceptors and dopamine receptors, Eur. J. Pharmacol. 75:11–1.PubMedCrossRefGoogle Scholar
  261. Woodruff, G. N., 1971, Dopamine receptors: A review, Comp. Gen. Pharmacol. 2:439–455.PubMedCrossRefGoogle Scholar
  262. Woodruff, G. N., 1982, ADTN-a potent dopamine receptor agonist, Trends Pharmacol. Sci. 3:59–61.CrossRefGoogle Scholar
  263. Woodruff, G. N., Elkhawad, A. 0., and Pinder, R. M., 1974, Long lasting Stimulation of locomotor activity produced by the intraventricular injection of a cyclic analogue of dopamine into conscious mice, Eur. J. Pharmacol. 25:80–8.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Carl Kaiser
    • 1
  1. 1.Research and Development DivisionSmith Kline & French LaboratoriesPhiladelphiaUSA

Personalised recommendations