Radioligand Binding Studies of Agonist Interactions with Dopamine Receptors

  • I. Creese
  • S. E. Leff
  • D. R. Sibley
  • M. W. Hamblin
Part of the New Horizons in Therapeutics book series (NHTH)


Since 1975, the elegantly simple radioligand binding technique has allowed direct examination of neurotransmitter and drug interactions with dopamine receptors. The simplification obtained through elimination of factors such as alteration of neurotransmitter synthesis or other regulators of dopamine’s second messenger systems is the chief advantage of this approach to the study of receptor biochemistry and pharmacology. This simplification, however, also presents a major challenge—to demonstrate that the binding sites identified in vitro have functional relevance in the physiological milieu. It is a task of utmost importance, and often of considerable difficulty, to demonstrate that receptor binding sites can be clearly associated with some biological function. Although problems remain, this correspondence between binding sites and their function, on both the behavioral and biochemical level, is steadily being established for the dopamine receptors.


Dopamine Receptor Adenylate Cyclase Guanine Nucleotide Adenylate Cyclase Activity Ergot Alkaloid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahn, H. S., Gardner, E., and Makman, M. H., 1979, Anterior pituitary adenylate cyclase: Stimulation by dopamine and other monoamines, Eur. J. Pharmacol. 53:313–317.PubMedCrossRefGoogle Scholar
  2. Bach, N. J., Kornfeld, E. C, Jones, N. D., Chaney, M. D., Dorman, D. E., Paschal, J. W., Clemens, J. A., and Smalstig, E. B., 1980, Bicyclic and tricyclic ergoline partial structures. Rigid 3-(2-aminoethyl) pyrazoles and 3-and 4-(2-aminoethyl) pyrazoles as dopamine agonists, J. Med. Chem. 23:481–491.PubMedCrossRefGoogle Scholar
  3. Bacopolous, N. G., 1981, Acute changes in the State of dopamine receptors; in vitro monitoring with 3H-dopamine, Life Sci. 29:2407–2414.CrossRefGoogle Scholar
  4. Bannon, M. J., Grace, A. A., Bunney, B. S., and Roth, R. H., 1980, Evidence for an irreversible interaction of bromoeryptine with central dopamine receptors, Naunyn Schmiedebergs Arch. Pharmacol. 312:37–41.PubMedCrossRefGoogle Scholar
  5. Battaglia, G., and Titeler, M., 1981, Direct binding of 3H-lisuride to adrenergic and serotonergic receptors, Life Sci. 29:909–916.PubMedCrossRefGoogle Scholar
  6. Bennett, J. P., Jr., 1978, Methods in binding studies, in: Neurotransmitter Receptor Binding (H. I. Yamamura, S. J. Enna, and M. J. Kuhar, eds.), Raven Press, New York, pp. 57–90.Google Scholar
  7. Bethea, C. L., Ramsdell, J. S., Jatte, R. B., Wilson, C. B., and Weiner, R. I., 1982, Characterization of the dopaminergic regulation of human prolactin-secreting cells cultured on extracellular matrix, J. Clin. Endocrinol. Metab. 54:892–902.CrossRefGoogle Scholar
  8. Boeynaems, J. M., and Dumont, J. E., 1977, The two-step model of ligand-reeeptor interaction, Mol. Cell. Endocrinol. 7:33–47.PubMedCrossRefGoogle Scholar
  9. Burt, D. R., 1978, Criteria for receptor identification, in: Neurotransmitter Receptor Binding (H. I. Yamamura, S. J. Enna, and M. J. Kuhar, eds.), Raven Press, New York, pp. 41–55.Google Scholar
  10. Burt, D. R., Enna, S. J., Creese, I., and Snyder, S. H., 1975, Dopamine receptor binding in the corpus striatum of mammalian brain, Proc. Natl. Acad. Sci. U.S.A. 72:4655–4659.PubMedCrossRefGoogle Scholar
  11. Burt, D. R., Creese, L, and Snyder, S. H., 1976, Properties of [3H]haloperidol and [3H]dopamine binding associated with dopamine receptors in calf brain membranes, Mol. Pharmacol. 12:800–812.PubMedGoogle Scholar
  12. Calabro, M. A., and MacLeod, R. M., 1978, Binding of dopamine to bovine anterior pituitary gland membranes, Neuro endocrinology 25:32–46.Google Scholar
  13. Camerman, N., and Camerman, A., 1981, On the stereochemistry of dopaminergic ergoline derivatives, Mol. Pharmacol. 19:517–519.PubMedGoogle Scholar
  14. Cannon, J. G., Demopoulos, B. J., Long, J. P., Flynn, J. R., and Sharabi, F. M., 1981, Proposed dopaminergic pharmacophore of lergotrile pergolide, and related ergot alkaloid derivatives, J. Med. Chem. 24:238–240.PubMedCrossRefGoogle Scholar
  15. Caron, M. C, Beaulieu, M., Raymond, V., Gagne, B., Drouin, J., Lefkowitz, R. J., and Labrie, F., 1978, Dopaminergic receptors in the anterior pituitary gland: Correlation of [3H]dihydroergocryptine binding with the dopaminergic control of prolactin release, J. Biol. Chem. 253:2244–2253.PubMedGoogle Scholar
  16. Cech, S. Y., Broaddus, W. C, and Maguire, M. E., 1980, Adenylate cyclase: The role of magnesium and other divalent cations, Mol. Cell Biochem. 33:67–92.PubMedCrossRefGoogle Scholar
  17. Chang, R. S., and Snyder, S. H., 1980, Histamine H1-receptor binding sites in guinea pig brain membranes: Regulation of agonist interactions by guanine nucleotides and cations, J. Neurochem. 34:916–922.PubMedCrossRefGoogle Scholar
  18. Clement-Cormier, Y. C, Heindel, J. J., and Robison, G. A., 1977, Adenylyl cyclase from a prolactin producing tumour cell: The effect of phenothiazines, Life Sci. 21:1357–1364.PubMedCrossRefGoogle Scholar
  19. Creese, L, and Sibley, D. R., 1979, Radioligand binding studies: Evidence for multiple dopamine receptors, Commun. Psychopharmacol. 3:385–395.PubMedGoogle Scholar
  20. Creese, I., and Sibley, D. R., 1981, Receptor adaptations to centrally acting drugs, Annu. Rev. Pharmacol. Toxicol. 21:357–391.PubMedCrossRefGoogle Scholar
  21. Creese, L, and Snyder, S. H., 1977, Simple and sensitive radioreceptor assay for antischizophrenic drugs in blood, Nature 270:180–182.PubMedCrossRefGoogle Scholar
  22. Creese, I., and Snyder, S. H., 1978, Dopamine receptor binding of 3H-ADTN (2-amino-6,7-dihydroxy-l,2,3,4-tetrahydronaphthalene) regulated by guanyl nucleotides, Eur. J. Pharmacol. 50:459–461.PubMedCrossRefGoogle Scholar
  23. Creese, I., Burt, D. R., and Snyder, S. H., 1975, Dopamine receptor binding: Differentiation of agonist and antagonist states with 3H-dopamine and 3H-haloperidol, Life Sci. 17:993–1001.CrossRefGoogle Scholar
  24. Creese, I., Burt, D. R., and Snyder, S. H., 1976, Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs, Science 192:481–483.PubMedCrossRefGoogle Scholar
  25. Creese, I., Schneider, R., and Snyder, S. H., 1977a, 3H-Spiroperidol labels dopamine receptors in pituitary and brain, Eur. J. Pharmacol. 46:377–381.CrossRefGoogle Scholar
  26. Creese, I., Burt, D. R., and Snyder, S. H., 1977b, Dopamine receptor binding enhancement aecompanies lesion-induced behavioral supersensitivity, Science 197:596–598.CrossRefGoogle Scholar
  27. Creese, I., Burt, D. R., and Snyder, S. H., 1978a, Biochemical actions of neuroleptic drugs: focus on the dopamine receptor, in: Handbook of Psychopharmacology, Volume 10 (L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds.), Plenum Press, New York, pp. 37–89.Google Scholar
  28. Creese, I., Padgett, L., Fazzini, E., and Lopez, F., 1979a, 3H-N-1-Propylnorapomorphine: A novel agonist ligand for central dopamine receptors, Eur. J. Pharmacol. 56:411–412.CrossRefGoogle Scholar
  29. Creese, I., Usdin, T. B., and Snyder, S. H., 1979b, Guanine nucleotides distinguish between two dopamine receptors, Nature 278:577–578.CrossRefGoogle Scholar
  30. Creese, I., Usdin, T. B. and Snyder, S. H., 1979c, Dopamine receptor binding regulated by guanine nucleotides, Mol. Pharmacol. 16:69–76.Google Scholar
  31. Creese, I., Stewart, K., and Snyder, S. H., 1979d, Species variations in dopamine receptor binding, Eur. J. Pharmacol. 60:55–66.CrossRefGoogle Scholar
  32. Creese, I., Sibley, D. R., Hamblin, M. W., and Leff, S. E., 1983, The Classification of dopamine receptors: Relationship to radioligand binding, Annu. Rev. Neurosci. 6:43–71.PubMedCrossRefGoogle Scholar
  33. Cronin, M. J., and Weiner, R. I., 1979, [3H]Spiroperidol (spiperone) binding to a putative dopamine receptor in sheep and steer pituitary and stalk median eminence, Endocrinology 104:307–312.PubMedCrossRefGoogle Scholar
  34. Cronin, M. J., Roberts, J. M., and Weiner, R. I., 1978, Dopamine and dihydroergocryptine binding to the anterior pituitary and other brain areas of the rat and sheep, Endocrinology 103:302–309.PubMedCrossRefGoogle Scholar
  35. Cross, A. J., and Owen, F., 1980, Characteristics of 3H-cis-flupenthixol binding to calf brain membranes, Eur. J. Pharmacol. 65:341–347.PubMedCrossRefGoogle Scholar
  36. Dannies, P. S., Gautvik, K. M., and Tashjian, A. H., 1976, A possible role of cyclic AMP in mediating the effects of thyrotropin-releasing hormone on prolactin release and on prolactin and growth hormone synthesis in pituitary cells in culture, Endocrinology 98:1147–1159.PubMedCrossRefGoogle Scholar
  37. De Camilli, P., Macconi, D., and Sdada, A., 1979, Dopamine inhibits adenylate cyclase in human prolactin-secreting pituitary adenomas, Nature 278:252–254.PubMedCrossRefGoogle Scholar
  38. De Lean, A., Stadel, J. M., and Lefkowitz, R. J., 1980, A ternary complex model explains the agonist-speeifie binding properties of the adenylate cyclase-coupled beta-adrenergic receptor, J. Biol. Chem. 255:7108–7117.PubMedGoogle Scholar
  39. Delitala, G., Yeo, T., Grossman, A., Hathway, N. R., and Besser, G. M., 1980, A comparison of the effects of four ergot derivatives on prolactin secretion by dispersed rat pituitary cells, J. Endocrinol. 87:95–103.PubMedCrossRefGoogle Scholar
  40. Fields, J. Z., Reisine, T. D., and Yamamura, H. I., 1977, Biochemical demonstration of dopaminergic receptors in rat and human brain using [3H]spiroperidol, Brain Res. 136:578–584.PubMedCrossRefGoogle Scholar
  41. Fujita, N., Saito, K., Yonehara, N., Watanabe, Y., and Yoshida, H., 1979, Binding of 3Hlisuride hydrogen maleate to striatal membranes of rat brain, Life Sci. 25:969–973.PubMedCrossRefGoogle Scholar
  42. Furchgott, R. F., 1978, Pharmacological characterization of receptors: Its relation to radioligand-binding studies,Fed. Proc. 37:115–120.PubMedGoogle Scholar
  43. Fuxe, K., Currodi, H., Hokfelt, T., Lidbrink, P., and Ungerstedt, U., 1974, Ergocornine and 2 Br-α-ergocryptine. Evidence for prolonged dopamine receptor stimulation, Med. Biol. 52:121–132.PubMedGoogle Scholar
  44. Fuxe, K., Agnati, L. F., Kohler, C., Kuonen, D., Ogren, S. 0., Anderson, K., and Hokfelt, T., 1981, Characterization of normal and supersensitive dopamine receptors: Effects of ergot drugs and neuropeptide, J. Neural Transm. 51:3–37.PubMedCrossRefGoogle Scholar
  45. Garcia-Sainz, J. A., Li, S. Y., and Fain, J. N., 1981, Alpha2 adrenergic amines, adenosine and Prostaglandins inhibit lipolysis and cyclic AMP accumulation in hamster adipocytes in the absence of extracellular sodium, Life Sci. 28:401–406.PubMedCrossRefGoogle Scholar
  46. Giannattasio, G., De Ferrari, M. E., and Spada, A., 1981, Dopamine-inhibited adenylate cyclase in female rat adenohypophysis, Life Sci. 28:1605–1612.PubMedCrossRefGoogle Scholar
  47. Glossmann, H., and Hornung, R., 1980, Alpha-adrenoreceptors in rat brain: Sodium changes the affinity of agonists for prazosin sites, Eur. J. Pharmacol. 61:407–408.PubMedCrossRefGoogle Scholar
  48. Goldsmith, P. C, Cronin, M, J., and Weiner, R. I., 1979, Dopamine receptor sites in the anterior pituitary, J. Histochem. Cytochem. 27:1205–1207.PubMedCrossRefGoogle Scholar
  49. Gorissen, H., and Laduron, P., 1979, Solubilisation of high-affinity dopamine receptors, Nature 279:72–74.PubMedCrossRefGoogle Scholar
  50. Gorissen, H., Ilien, B., Aerts, G., and Laduron, P., 1980, Differentiation of solubilized dopamine receptors from spirodecanone binding sites in rat striatum, FEBS Lett. 121:133–138.PubMedCrossRefGoogle Scholar
  51. Hamblin, M., and Creese, I., 1982a, Phenoxybenzamine treatment differentiates dopaminergic 3H-ligand binding sites in bovine caudata membranes, Mol. Pharmacol. 21:44–51.Google Scholar
  52. Hamblin, M. W., and Creese, I., 1982b, 3H-Dopamine binding to rat striatal D-2 and D-3 sites: Enhancement by magnesium and inhibition by sodium, Life Sci. 30:1587–1595.CrossRefGoogle Scholar
  53. Heidenreich, K. A., Weiland, G. A., and Molinoff, P. B., 1980, Characterization of radiolabeled agonist binding to β-adrenergic receptors in mammalian tissues, J. Cyclic Nucleotide Res. 6:217–230.PubMedGoogle Scholar
  54. Heidenreich, K. A., Weiland, G. A., and Molinoff, P. B., 1982, Effects of magnesium and N-ethylmaleimide on the binding of 3H-hydroxybenzylisoproterenol to β-adrenergic receptors, J. Biol. Chem. 257:804–810.PubMedGoogle Scholar
  55. Hoffman, B. B., and Lefkowitz, R. J., 1980, Radioligand binding studies of adrenergic receptors: New insights into molecular and physiological regulation, Annu. Rev. Pharmacol. Toxicol. 20:581–608.PubMedCrossRefGoogle Scholar
  56. Hoffman, B. B., Michel, T., Brenneman, T. B., and Lefkowitz, R. J., 1982, Interactions of agonists with platelet α2-adrenergic receptors, Endocrinology 110:926–932.PubMedCrossRefGoogle Scholar
  57. Howlett, D. R., and Nahorski, S. R., 1978, A comparative study of [3H]haloperidol and [3H]spiroperidol binding to receptors on rat cerebral membranes, FEBS Lett. 87:152–156.PubMedCrossRefGoogle Scholar
  58. Hyttel, J., 1978a, A comparison of the effect of neuroleptic drugs on the binding of 3Hhaloperidol and 3H-cis(Z)-flupenthixol and on adenylate cyclase activity in rat striatal tissue in vitro, Prog. Neuropsychopharmacol. 2:329–335.CrossRefGoogle Scholar
  59. Hyttel, J., 1978b, Effects of neuroleptics on 3H-haloperidol and 3H-cis(Z)-flupenthixol binding and on adenylate cyclase activity in vitro, Life Sci. 23:551–555.CrossRefGoogle Scholar
  60. Hyttel, J., 1980, Further evidence that 3H-cis(Z)flupenthixol binds to the adenylate cyclaseassociated dopamine receptor (D-1) in rat corpus striatum, Psychopharmacology 67:107–109.PubMedCrossRefGoogle Scholar
  61. Hyttel, J., 1981, Similarities between the binding of 3H-piflutixol and 3H-flupentixol to rat striatal dopamine receptors in vitro, Life Sci. 28:563–569.PubMedCrossRefGoogle Scholar
  62. Jacobs, S., and Cuatrecasas, P., 1976, The mobile receptor hypothesis and “cooperativity” of hormone binding application to insulin, Biochim. Biophys. Acta 433:482–495.PubMedCrossRefGoogle Scholar
  63. Kebabian, J. W., and Calne, D. B., 1979, Multiple receptors for dopamine, Nature 277:93–96.PubMedCrossRefGoogle Scholar
  64. Kent, R. S., De Lean, A., and Lefkowitz, R. J., 1980, A quantitative analysis of betaadrenergic receptor interactions: Resolution of high and low affinity states of the receptor by Computer modeling of ligand binding data, Mol. Pharmacol. 17:14–23.PubMedGoogle Scholar
  65. Komiskey, H. L., Bossart, J. F., Miller, D. D., and Patil, P. N., 1978, Conformation of dopamine at the dopamine receptor, Proc. Natl. Acad. Sci. U.S.A. 75:2641–2643.Google Scholar
  66. Korner, M., Gilon, C, and Schramm, M., 1982, Locking of hormone in the β-adrenergic receptor by attack on a sulfhydryl in an associated component, J. Biol. Chem. 257:3389–3396.PubMedGoogle Scholar
  67. LaBrie, F., Ferland, L., DiPaolo, T., and Veilleux, R., 1980, Modulation of prolactin secretion by sex Steroids and thyroid hormones, in: Central and Peripheral Regulation of Prolactin Function (R. M. MacLeod and U. Scapagnini, eds.), Raven Press, New York, pp. 97–113.Google Scholar
  68. Lad, P. M., Nielsen, T. B., Preston, M. S., and Rodbell, M., 1980, The role of the guanine nucleotide exchange reaction in the regulation of the beta-adrenergic receptor and in the actions of catecholamines and choleratoxin on adenylate cyclase in turkey erythrocyte membranes, J. Biol. Chem. 255:988–995.PubMedGoogle Scholar
  69. Larsen, N. E., Mullikin-Kilpatrick, K., and Blume, A. J., 1981, Two different modifications of the neuroblastoma x glioma hybrid opiate receptors induced by N-ethylmaleimide, Mol. Pharmacol. 20:255–262.PubMedGoogle Scholar
  70. Leff, S. E., and Creese, I., 1982, Solubilization of D-2 dopamine receptors from canine caudate: Agonist-occupation stabilizes guanine nucleotide sensitive receptor complexes, Biochem. Biophys. Res. Commun. 108:1150–1157.PubMedCrossRefGoogle Scholar
  71. Leff, S. E., and Creese, I., 1983, Dopaminergic D-3 sites are postsynaptic, Nature 306:586–589.PubMedCrossRefGoogle Scholar
  72. Leff, S., Adams, L., Hyttel, J., and Creese, I., 1981, Kainate lesion dissociates striatal dopamine receptor radioligand binding sites, Eur. J. Pharmacol. 70:71–75.PubMedCrossRefGoogle Scholar
  73. Leff, S. E., Hamblin, M. W., and Creese, L, 1982, Acute reserpine mimics the effects of nigrostriatal 6-hydroxydopamine lesions on “D-3” specific 3H-dopamine binding in rat striatum, Soc. Neurosci. Abstr. 8:717.Google Scholar
  74. Lefkowitz, R. J., 1980, Modification of adenylate cyclase activity by alpha and beta-adrenergic receptors: Insights from radioligand binding studies, in: Psychopharmacology and Biochemistry of Neurotransmitter Receptors (H. I. Yamamura, R. W. Olsen, and E. Usdin, eds.), Elsevier Press, New York, pp. 155–170.Google Scholar
  75. Lefkowitz, R. J., and Williams, L. T., 1977, Catecholamine binding to the beta-adrenergic receptor, Proc. Natl. Acad. Sci. U.S.A. 74:515–519.PubMedCrossRefGoogle Scholar
  76. Levitski, A., 1978, The mode of coupling of adenylate cyclase to hormone receptors and its modulation by GTP, Biochem. Pharmacol. 27:2083–2088.CrossRefGoogle Scholar
  77. Leysen, J. E., Gommeren, W., and Laduron, P. M., 1978, Spiperone: A ligand of choice for neuroleptic receptors. I. Kinetics and characteristics of in vitro binding, Biochem. Pharmacol. 27:307–316.PubMedCrossRefGoogle Scholar
  78. Limbird, L. E., 1981, Activation and attenuation of adenylate cyclase. The role of GTPbinding proteins as macromolecular messengers in receptor-cyclase coupling, Biochem. J. 195:1–13.PubMedGoogle Scholar
  79. Limbird, L. E., Gill, D. M., and Lefkowitz, R. J., 1980, Agonist-promoted coupling of the beta-adrenergic receptor with the guanine nucleotide regulatory protein of the adenylate cyclase system, Proc. Natl. Acad. Sci. U.S.A. 77:775–779.PubMedCrossRefGoogle Scholar
  80. List, S., Titeler, M., and Seeman, P., 1980, High-affinity 3H-dopamine receptors (D3 sites) in human and rat brain, Biochem. Pharmacol. 29:1621–1622.PubMedCrossRefGoogle Scholar
  81. MacLeod, R. M., Nagy, I., Login, I. S., Kimura, H., Valdenegro, C. A., and Thorner, M. 0., 1980, The role of dopamine, cAMP, and calcium in prolactin secretion, in: Central and Peripheral Regulation of Prolactin Function (R. M. MacLeod and U. Scapaagnini, eds.), Raven Press, New York, pp. 27–41.Google Scholar
  82. Madras, B. K., Davis, A., Kunashko, P., and Seeman, P., 1980, Solubilization of dopamine receptors from dog and human brains, in: Psychopharmacology and Biochemistry of Neurotransmitter Receptors (H. I., Yamamura, R. W. Olsen, and E. Usdin, eds.), Elsevier/North-Holland, New York, pp. 411–419.Google Scholar
  83. Markstein, R., 1981, Neurochemical effects of some ergot derivatives: A basis for their antiparkinson action, J. Neural Transm. 51:39–59.PubMedCrossRefGoogle Scholar
  84. Meunier, H., and Labrie, F., 1982, The dopamine receptor in the intermediate lobe of the rat pituitary gland is negatively coupled to adenylate cyclase, Life Sci. 30:963–968.PubMedCrossRefGoogle Scholar
  85. Mowles, T. F., Burghardt, B., Burghardt, C., Charneki, A., and Sheppard, H., 1978, The dopamine receptor of the rat mammotroph in cell culture as a model for drug action, Life Sci. 22:2103–2112.PubMedCrossRefGoogle Scholar
  86. Muller, E. E., Panerai, A. E., Cocchi, D., and Mantegazza, P., 1977, Endocrine profile of ergot alkaloids, Life Sci. 21:1545–1558.PubMedCrossRefGoogle Scholar
  87. Munemura, M., Eskay, R. L., and Kebabian, J. W., 1980a, Release of α-melanocyte-stimulating hormone from dispersed cells of the intermediate lobe of the rat pituitary gland: Involvement of catecholamines and adenosine 3’5’-monophosphate, Endocrinology 106:1795–1803.CrossRefGoogle Scholar
  88. Munemura, M., Cote, T. E., Tsuruta, K., Eskay, R. L., and Kebabian, J. W., 1980b, The dopamine receptor in the intermediate lobe of the rat pituitary gland: Pharmacological characterization Endocrinology 107:1676–1683.CrossRefGoogle Scholar
  89. Munson, P. J., and Rodbard, D., 1980, Ligand: A versatile computerized approach for characterization of ligand-binding systems, Anal. Biochem. 107:220–239.PubMedCrossRefGoogle Scholar
  90. Nagy, J. I., Lee, T., Seeman, P., and Fibiger, H. C, 1978, Direct evidence for presynaptic and postsynaptic dopamine receptors in brain, Nature 274:278–281.PubMedCrossRefGoogle Scholar
  91. Naor, Z., Snyder, G., Fawcett. C. P., and McCann, S. M., 1980, Pituitary cyclic nucleotides and thyrotropin-releasing hormone action: The relationship of adenosine 3’,5’-monophosphate and guanosine 3’5’-monophosphate to the release of thyrotropin and prolactin, Endocrinology 106:1304–1310.PubMedGoogle Scholar
  92. Onali, P., Schwartz, J. P., and Costa, E., 1981, Dopaminergic modulation of adenylate cyclase Stimulation of vasoactive intestinal peptide (VIP) in anterior pituitary, Proc. Natl. Acad. Sci. U.S.A. 78:6531–6534.PubMedCrossRefGoogle Scholar
  93. Pardo, J. V., Creese, I., Burt. D. R., and Snyder, S. H., 1977, Ontogenesis of dopamine receptor binding in the corpus striatum of the rat. Brain Res. 125:376–382.PubMedCrossRefGoogle Scholar
  94. Pawlikowski, M., Karasek, E., Kunert-Radek, J., and Stepien, H., 1979, Dopamine blockade of the thyroliberin-induced cyclic AMP accumulation in rat anterior pituitary, J. Neural Transm. 45:75–79.PubMedCrossRefGoogle Scholar
  95. Pawlikowski, M., Karasek, E., Kunert-Radek, J., and Jaranowska, M., 1981, Effects of dopamine on cyclic AMP concentration in the anterior pituitary gland in vitro, J. Neural Transm. 50:179–184.PubMedCrossRefGoogle Scholar
  96. Pert, C. B., Pasternak, G., and Snyder, S. H., 1973, Opiate agonists and antagonists discriminated by receptor binding in brain, Science 182:1359–1361.PubMedCrossRefGoogle Scholar
  97. Quik, M., and Iversen, L. L., 1979, Regional study of 3H-spiperone binding and the dopamine-sensitive adenylate cyclase in rat brain, Eur. J. Pharmacol. 56:323–330.PubMedCrossRefGoogle Scholar
  98. Ray, K. P., and Wallis, M., 1980, Is cyclic adenosine 3’:5’-monophosphate involved in the dopamine-mediated inhibition of prolactin secretion?, J. Endocrinol. 85:59p.Google Scholar
  99. Reynolds, G. P., and Riederer, P., 1981, The effects of lisuride and some other dopaminergic agonists on receptor binding in human brain, J. Neural Transm. 51:107–111.PubMedCrossRefGoogle Scholar
  100. Rutschmann, J., and Stadler, P. A., 1978, Chemical background, in: Ergot Alkaloids and Related Compounds (B. Berde and H. 0. Schild, eds.), Springer-Verlag, New York, pp. 29–78.CrossRefGoogle Scholar
  101. Schachter, M., Bedard, P., Debono, A. G., Jenner, P., Marsden, C. D., Price, P., Parkes J. D., Keenan, J. Smith, B., Rosenthaler, J., Horowski, R., and Dorow, R., 1980, The role of D-1 and D-2 receptors, Nature 286:157–159.PubMedCrossRefGoogle Scholar
  102. Schmidt, M. J., and Hill, L. E., 1977, Effects of ergots on adenylate cyclase activity in the corpus striatum and pituitary, Life Sci. 20:789–798.PubMedCrossRefGoogle Scholar
  103. Schwarcz, R., Creese, I., Coyle, J. T., and Snyder, S. H., 1978, Dopamine receptors localized on cerebral cortical afferents to rat corpus striatum, Nature 271:766–768.PubMedCrossRefGoogle Scholar
  104. Seeman, P., 1980, Brain dopamine receptors, Pharmacol. Rev. 32:229–313.PubMedGoogle Scholar
  105. Seeman, P., Chau-Wong, M., Tedesco, J., and Wong, K., 1975, Brain receptors for antipsychotic drugs and dopamine: Direct binding assays, Proc. Natl. Acad. Sci. U.S.A. 72:4376–4380.PubMedCrossRefGoogle Scholar
  106. Seeman, P., Lee, T., Chau-Wong, M., Tedesco, J., and Wong, K., 1976a, Dopamine receptors in human and calf brains, using [3H]apomorphine and an antipsychotic drug, Proc. Natl. Acad. Sci. U.S.A. 73:4354–4358.CrossRefGoogle Scholar
  107. Seeman, P., Lee, T., Chau-wong, M., and Wong, K., 1976b, Antipsychotic drug doses and neuroleptic/dopamine receptors, Nature 261:717–719.CrossRefGoogle Scholar
  108. Seeman, P., Woodruff, G. N., and Poat, J. A., 1979, Similar binding of 3H-ADTN and 3Hapomorphine to calf brain dopamine receptors, Eur. J. Pharmacol. 55:137–142.PubMedCrossRefGoogle Scholar
  109. Shaar, C. J., and Clemens, J. A., Inhibition of lactation and prolactin secretion in rats by ergot alkaloids, 1972, Endocrinology 90:285–288.PubMedCrossRefGoogle Scholar
  110. Shane, E., Gammon, D. E., and Bilezikian, J. P., 1981, Guanine nucleotide-induced shift in binding affinity for beta-adrenergic agonists in rat reticulocyte and turkey erythrocyte membranes, Biochem. Pharmacol. 30:531–535.PubMedCrossRefGoogle Scholar
  111. Sibley, D. R., and Creese, I., 1979, Multiple pituitary dopamine receptors: Effects of guanine nucleotides, Soc. Neurosci. Abstr. 5:352.Google Scholar
  112. Sibley, D. R., and Creese, I., 1982, Anterior pituitary dopamine receptors: Demonstration of interconvertible high and low affinity states of D-2 dopamine receptor, J. Biol. Chem. 257:6351–6361.PubMedGoogle Scholar
  113. Sibley, D. R., and Creese, I., 1983a, Regulation of ligand binding to pituitary D-2 dopaminergic receptors: Effects of divalent cations and functional group modification, J. Biol. Chem. 258:4957–4965.Google Scholar
  114. Sibley, D. R., and Creese, I., 1983b, Interactions of ergot alkaloids with anterior pituitary D-2 dopamine receptors, Mol. Pharmacol. 23:585–593.Google Scholar
  115. Sibley, D. R., Leff, S. E., and Creese, I., 1982, Interactions of novel dopaminergic ligands with D-1 and D-2 dopamine receptors, Life Sci. 31:637–645.PubMedCrossRefGoogle Scholar
  116. Sibley, D. R., Mahan, L. C, and Creese, I., 1983, Dopamine receptor binding on intact cells: Absence of high affinity agonist-receptor binding state, Mol. Pharmacol. 23:295–302.PubMedGoogle Scholar
  117. Smith, S. K., and Limbird, L. E., 1982, Apparent independence of the alpha-adrenergic receptor (α-AR) of the human platelet from the adpribosylated 42,000 Mr subunit of the adenylate cyclase system, Fed. Proc. 41:899.Google Scholar
  118. Sokoloff, P., Martres, M.-P., and Schwartz, J.-C, 1980a, 3H-Apomorphine labels both dopamine postsynaptic receptors and autoreceptors, Nature 288:283–286.CrossRefGoogle Scholar
  119. Sokoloff, P., Martres, M. P., and Schwartz, J. C, 1980b, Three classes of dopamine receptor (D-2, D-3, D-4) identified by binding studies with 3H-apomorphine and 3H-domperidone, Naunyn Schmiedebergs Arch. Pharmacol. 315:89–102.CrossRefGoogle Scholar
  120. Stefanini, E., Dejoto, P., Marchisio, A., Vernaleone, F., and Collu, R., 1980, [3H]Spiroperidol binding to a putative dopaminergic receptor in rat pituitary gland, Life Sci. 26:583–587.PubMedCrossRefGoogle Scholar
  121. Tamminga, C. A., and Schaffer, M. H., 1979, Treatment of schizophrenia with ergot derivatives, Psychopharmacology 66:239–242.PubMedCrossRefGoogle Scholar
  122. Thal, L., Creese, I., and Snyder, S. H., 1978,3H-Apomorphine interactions with dopamine receptors in calf brain, Eur. J. Pharmacol. 49:295–299.PubMedCrossRefGoogle Scholar
  123. Titeler, M., and Seeman, P., 1978, Antiparkinsonian drug doses and neuroleptic 34:1490–1492.Google Scholar
  124. Titeler, M., and Seeman, P., 1979, Selective labeling of different dopamine receptors by a new agonist 3H-ligand: 3H-N-propylnorapomorphine, Eur. J. Pharmacol. 56:291–292.PubMedCrossRefGoogle Scholar
  125. Titeler, M., Weinreich, P., Sinclair, D., and Seeman, P., 1978, Multiple receptors for brain dopamine, Proc. Natl. Acad. Sci. U.S.A. 75:1153–1156.PubMedCrossRefGoogle Scholar
  126. Titeler, M., List, S., and Seeman, P., 1979, High affinity dopamine receptors (D3) in rat brain, Commun. Psychopharmacol. 3:411–420.PubMedGoogle Scholar
  127. Tsai, B. S., and Lefkowitz, R. J., 1978, Agonist-specific effects of monovalent and divalent cations on adenylate cyclase-coupled alpha adrenergic receptors in rabbit platelets, Mol. Pharmacol. 14:540–548.PubMedGoogle Scholar
  128. Tsurata, K., Frey, E. A., Grewe, C. W., Cote, T. E., Eskay, R. L., and Kebabian, J. W., 1981, Evidence that LY-141865 specifically stimulates the D-2 dopamine receptor, Nature 292:463–465.CrossRefGoogle Scholar
  129. Usdin, T. B., Creese, I.. and Snyder, S. H., 1980, Regulation by cations of 3H-spiroperidol binding associated with dopamine receptors of rat brain, J. Neurochem. 34:669–676.PubMedCrossRefGoogle Scholar
  130. Vauquelin, G., and Maguire, M. E., 1980, Mol. Pharmacol. 18:362–369.PubMedGoogle Scholar
  131. Vauquelin, G., Bottari, S., Kanarek, L., and Strosberg, A. D., 1979, Evidence for essential disulfide bonds in βi-adrenergic receptors of turkey erythrocyte membranes, J. Biol. Chem. 254:4462–4469.PubMedGoogle Scholar
  132. Vauquelin, G., Bottari, S., and Strosberg, A. D., 1980a, Inactivation of β-adrenergic receptors by N-ethylmaleimide: Permissive role of β-adrenergic agents in relation to adenylate cyclase activation, Mol. Pharmacol. 17:163–171.Google Scholar
  133. Vauquelin, G., Bottari, S., Andre, C, Jacobson, B., and Strosberg, A. D., 1980b, Interaction between β-adrenergic receptors and guanine nucleotide sites in turkey erythrocyte membranes, Proc. Natl. Acad. Sci. U.S.A. 77:3801–3805.CrossRefGoogle Scholar
  134. Weber, H. P., 1980, The molecular architecture of ergopeptines: A basis for biological interaction, in: Ergot Compounds and Brain Function: Neuroendocrine and Neuropsychiatric Aspects (M. Goldstein, D. B. Calne, A. Lieberman, and M. Thorner, eds.), Raven Press, New York, pp. 25–34.Google Scholar
  135. Weiner, W. J., Goetz, C. G., Nausieda, P. A., and Klawans, H. L., 1979, Amphetamineinduced hypersensitivity in guinea pigs, Neurology (N.Y.) 29:1054–1057.CrossRefGoogle Scholar
  136. Williams, L. T., and Lefkowitz, R. J., 1977, Slowly reversible binding of catecholamine to a nucleotide-sensitive State of the beta-adrenergic receptor, J. Biol. Chem. 252:7207–7213.PubMedGoogle Scholar
  137. Yeo, T., Thorner, M. 0., Jones, A., Lowry, P. J., and Besser, G. M., 1979, The effects of dopamine, bromocriptine, lergotrile and metoclopramide on prolactin release from continuously perfused columns of isolated rat pituitary cells, Clin. Endocrinol. 10:123–130.CrossRefGoogle Scholar
  138. Zahniser, N. R., and Molinoff, P. B., 1978, Effect of guanine nucleotides on striatal dopamine receptors, Nature 275:453–455.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • I. Creese
    • 1
  • S. E. Leff
    • 1
  • D. R. Sibley
    • 1
  • M. W. Hamblin
    • 1
  1. 1.Department of NeurosciencesUniversity of California, San Diego, School of MedicineLa JollaUSA

Personalised recommendations