Hemodynamic Factors Involved in the Regulation of Sodium Balance

  • Jay H. Stein
Part of the New Horizons in Therapeutics book series (NHTH)


Sodium salts constitute more than 90% of the total solute contained in extracellular fluid. Therefore, the content of the extracellular fluid volume is dependent on the regulation of sodium balance. Since sodium salts are excreted primarily by the kidney, it follows that the regulation of sodium balance will be determined by the relationship between sodium intake and the renal handling of sodium. In this chapter I briefly review the factors involved in the renal handling of sodium, emphasize how hemodynamic alterations may play a major regulatory role in the system, and, last, discuss the possible role of the dopaminergic receptor in this model.


Renal Blood Flow Sodium Excretion Sodium Transport Proximal Convoluted Tubule Urinary Sodium Excretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreoli, T. E., and Schafer, J. A., 1979, External Solution driving forces for isotonic fluid absorption in proximal tubules, Fed. Proc. 38:154–160.PubMedGoogle Scholar
  2. Barajas, L., 1978, Innervation of the renal cortex, Fed. Proc. 37:1192–1201.PubMedGoogle Scholar
  3. Bello-Reuss, E., 1980, Effect of catecholemines on fluid reabsorption by the isolated proximal convoluted tubule, Am. J. Physiol. 238-.F347–F352.PubMedGoogle Scholar
  4. Bello-Reuss, E., Colindres, R. E., Pastoriza-Munoz, E., Mueller, R. A., and Gottschalk, C. W., 1975, Effects of acute unilateral renal denervation in the rat, J. Clin. Invest. 56:208–217.PubMedCrossRefGoogle Scholar
  5. Bello-Reuss, E., Higashi, Y., and Kaneda, Y., 1982, Dopamine decreases fluid reabsorption in straight portions of rabbit proximal tubule, Am. J. Physiol. 242:F634–F640.PubMedGoogle Scholar
  6. Brenner, B. M., Troy, J. L., Daugharty, T. M., and Maclnnes, R. M., 1973, Quantitative importance of changes in postglomerular colloid osmotic pressure in mediating glomerulotubular balance in the rat, J. Clin. Invest. 52:190–197.PubMedCrossRefGoogle Scholar
  7. Bresler, E. H., 1956, Problem of volume component of body fluid homeostasis, Am. J. Med. Sci. 232:93–104.PubMedCrossRefGoogle Scholar
  8. Brotzu, G., 1970, Inhibition by chlorpromazine of the effects of dopamine on the dog kidney, J. Pharm. Pharmacol. 22:664–667.PubMedCrossRefGoogle Scholar
  9. Burg, M. B., 1981, The renal handling of sodium chloride, water, amino acids, and glucose, in: The Kidney, 2nd ed. (B. M. Brenner and F. C. Rector, eds.), W. B. Saunders, Philadelphia, pp. 328–370.Google Scholar
  10. Earley, L. E., and Friedler, R. M., 1965, Changes in renal blood flow and possibly intrarenal distribution of blood during the natriuresis accompanying saline loading in the dog, J. Clin. Invest. 44:929–941.PubMedCrossRefGoogle Scholar
  11. Fadem, S. Z., Hernandez-Llamas, G., Patak, R. V., Rosenblatt, S. G., Lifschitz, M. D., and Stein, J. H., 1982, Studies on the mechanism of sodium excretion during druginduced vasodilatation in the dog, J. Clin. Invest. 69:604–610.PubMedCrossRefGoogle Scholar
  12. Fine, L. G., and Trizna, W., 1977, Influence of Prostaglandins on sodium transport of isolated medullary nephron segments, Am. J. Physiol. 232:F383–F390.PubMedGoogle Scholar
  13. Goodyer, A. V. N., and Jaeger, C A., 1955, Renal response to non-shocking hemorrhage: Role of the autonomic nervous system and of the renal circulation, Am. J. Physiol. 180:69–74.PubMedGoogle Scholar
  14. Green, R., Windhager, E. E., and Giebisch, G., 1974, Protein oncotic pressure effects on proximal tubular movement in the rat, Am. J. Physiol. 226:265–276.PubMedGoogle Scholar
  15. Greger, R., 1981, Chloride reabsorption in the rabbit cortical thick ascending limb of Henle’s loop of rabbit kidney, Pfluegers Arch 392:92–94.CrossRefGoogle Scholar
  16. Gross, J. B., Imai, M., and Kokko, J. P., 1975, A functional comparison of the cortical collecting tubule and the distal convoluted tubule, J. Clin. Invest. 55:1284–1294.PubMedCrossRefGoogle Scholar
  17. Haberle, D. A., Shiigai, T. T., Maier, G., Schiffl, H., and Davis, J. M., 1981, Dependency of proximal tubular fluid transport on the load of glomerular filtrate, Kidney Int. 20:18–28.PubMedCrossRefGoogle Scholar
  18. Hahn, R. A., and Wardell, J. R., Jr., 1980, Antagonism of the renal vasodilator activity of dopamine by metoclopramide, Arch. Pharmacol. 314:177–182.CrossRefGoogle Scholar
  19. Harris, P. I., and Young, J. A., 1977, Dose-dependent Stimulation and inhibition of proximal tubular sodium reabsorption by angiotensin II in the rat kidney, Pfluegers Arch. 367:295–297.CrossRefGoogle Scholar
  20. Ichikawa, I., and Brenner, B. M., 1980, Importance of efferent arteriolar vascular tone in regulation of proximal tubule fluid reabsorption and glomerulotubular balance in the rat, J. Clin. Invest. 65:1192–1201.PubMedCrossRefGoogle Scholar
  21. Imai, M., and Kokko, J., 1974, Sodium chloride, urea, and water transport in the thin ascending limb of Henle: Generation of osmotic gradients by passive diffusion of solutes, J. Clin. Invest. 53:393–402.PubMedCrossRefGoogle Scholar
  22. Lameire, N. H., Lifschitz, M. D., and Stein, J. H., 1977, Heterogeneity of nephron function, Annu. Rev. Physiol. 39:159–184.PubMedCrossRefGoogle Scholar
  23. Lang, W. J., and Woodman, O. L., 1982, Comparison of the vasodilator action of dopamine and dopamine agonists in the renal and coronary beds of the dog, Br. J. Pharmacol. 77:023–028. ai]Ludwig, C, 1844, Nieren und Harnbereitung, in: Handworterbuch der Physiologie, Volume 2 (Wanger, ed.), Vieweg & Sohn, Braunschweig, p. 628.Google Scholar
  24. McDonald, R. H., Jr., Goldberg, L. I., McNay, J. L., and Tuttle, E. P., Jr., 1964, Effects of dopamine in man: Augmentation of sodium excretion, glomerular filtration rate, and renal plasma flow, J. Clin. Invest. 43:1116–1124.PubMedCrossRefGoogle Scholar
  25. Osgood, R. W., Reineck, H. J., and Stein, J. H., 1978, Further studies on segmental sodium transport in the rat kidney during expansion of the extracellular fluid volume, J. Clin. Invest. 64:311–320.CrossRefGoogle Scholar
  26. Reineck, H. J., and Parma, R., 1982, Effect of medullary tonicity on urinary sodium excretion in the rat, J. Clin. Invest. 69:971–978.PubMedCrossRefGoogle Scholar
  27. Rosenbaum, J. D., Papper, S., and Ashley, M. M., 1959, Variations on renal excretion of sodium independent of change in adrenocortical hormone dosage in patients with Addison’s disease, J. Clin. Endocrinol. Metab. 15:1459–1474.CrossRefGoogle Scholar
  28. Starling, E. H., 1908, in: The Fluids of the Body (Keener, ed.), Chicago.Google Scholar
  29. Stein, J. H., Osgood, R. W., and Kunau, R. T., Jr., 1976, Direct measurement of papillary collecting duct sodium transport in the rat, J. Clin. Invest. 58:767–773.PubMedCrossRefGoogle Scholar
  30. Stokes, J. B., 1979, Effect of Prostaglandin E2 on chloride transport across the rabbit thick ascending limb of Henle, J. Clin. Invest. 64:495–502.PubMedCrossRefGoogle Scholar
  31. Stokes, J. B., and Kokko, J. P., 1977, Inhibition of sodium transport by Prostaglandin E2 across the isolated, perfused rabbit collecting tubule, J. Clin. Invest. 59:1099–1104.PubMedCrossRefGoogle Scholar
  32. Thorburn, G. D., Kopald, H. H., Herd, J. A., Hollenberg, M., O’Morchoe, C. C. C, and Barger, A. C, 1963, Intrarenal distribution of nutrient blood flow determined with krypton85 in the unanesthetized dog, Circ. Res. 13:290–307.PubMedCrossRefGoogle Scholar
  33. Wardener, H. E. de, Mills, I. H., Clapham, W. F., and Hayter, C. J., 1961, Studies on the efferent mechanism of the sodium diuresis which follows the administration of intravenous saline in the dog, Clin. Sci. 21:249–264.Google Scholar
  34. Whittembury, G. F., Rawlins, F. A., and Boulpaep, E. L., 1973, Paracellular pathway in kidney tubules: Electrophysiological and morphological evidence, in: Transport Mechanisms in Epithelia (H.H. Ussing and N. A. Thorn, eds.), Academic Press, New York, pp. 577–595.Google Scholar
  35. Yeh, B. K., McNay, J. L., and Goldberg, L. I., 1969, Attenuation of dopamine renal and mesenteric vasodilatation by haloperidol: Evidence for a specific dopamine receptor, J. Pharmacol. Exp. Ther. 168:303–309.PubMedGoogle Scholar
  36. Zambraski, E. J., and DiBona, G. F., 1976, Angiotensin II in antinatriuresis of low-level renal nerve stimulation, Am. J. Physiol. 231:1105–1110.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Jay H. Stein
    • 1
  1. 1.Department of MedicineThe University of Texas Health Science Center at San AntonioSan AntonioUSA

Personalised recommendations