Molecular Mechanisms of Vasodilatation

  • Louis J. Ignarro
  • Carl A. Gruetter
  • Albert L. Hyman
  • Philip J. Kadowitz
Part of the New Horizons in Therapeutics book series (NHTH)


The mechanisms by which chemical substances relax vascular smooth muscle have received considerable attention in recent years. These vasodilators include β-adrenergic receptor agonists, muscarinic receptor agonists, dopamine receptor agonists, certain autacoids, calcium antagonists, nucleosides, nucleotides, and nitrogen oxide-containing agents. This chapter deals primarily with the latter agents, which include organic nitrates and nitrites, inorganic nitrites, nitroso Compounds, S-nitrosothiols, and nitric oxide.


Nitric Oxide Methylene Blue Sodium Nitroprusside Guanylate Cyclase cGMP Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersson, R., Nilsson, K., Wikberg, J., Johansson, S., Mohme-Lundholm, E., and Lundholm, L., 1975, Cyclic nucleotides and the contraction of smooth muscle, Adv. Cyclic Nucleotide Res. 5:491–518.PubMedGoogle Scholar
  2. Armstrong, J. A., Marks, G. S., and Armstrong, P. W., 1980, Absence of metabolite formation during nitroglycerin-induced relaxation of isolated blood vessels, Mol. Pharmacol. 18:112–116.PubMedGoogle Scholar
  3. Arnold, W. P., Mittal, C. K., Katsuki, S., and Murad, F., 1977a, Nitric oxide activates guanylate cyclase and increases guanosine 3’,5”-cyclic monophosphate levels in various tissue preparations, Proc. Natl. Acad. Sci. U.S.A. 74:3203–3207.CrossRefGoogle Scholar
  4. Arnold, W. P., Aldred, R., and Murad, F., 1977b, Cigarette smoke activates guanylate cyclase and increases guanosine 3’,5’-monophosphate in tissues, Science 198:934–936.CrossRefGoogle Scholar
  5. Axelsson, K. L., Wikberg, J. E. S., and Andersson, R. G. G., 1979, Relationship between nitroglycerin, cyclic GMP and relaxation of vascular smooth muscle, Life Sci. 24:1779–1786.PubMedCrossRefGoogle Scholar
  6. Axelsson, K. L., Andersson, R. G. G., and Wikberg, J. E. S., 1982, Vascular smooth muscle relaxation by nitro Compounds: Reduced relaxation and cyclic GMP elevation in tolerant vessels and reversal of tolerance by dithiothreitol, Acta Pharmacol. Toxicol. 50:350–357.CrossRefGoogle Scholar
  7. Böhme, E., Graf, H., and Schultz, G., 1978, Effects of sodium nitroprusside and other smooth muscle relaxants on cyclic GMP formation in smooth muscle and platelets, Adv. Cyclic Nucleotide Res. 9:131–143.PubMedGoogle Scholar
  8. Clyman, R. I., Sandler, J. A., Manganiello, V. C, and Vaughan, M., 1975, Guanosine 3’,5’-monophosphate and adenosine 3’,5’-monophosphate content of human umbilical artery, J. Clin. Invest. 55:1020–1025.PubMedCrossRefGoogle Scholar
  9. Craven, P. A., and DeRubertis, F. R., 1978, Restoration and the responsiveness of purified guanylate cyclase to nitrosoguanidine, nitric oxide, and related activators by heme and heme proteins: Evidence for the involvement of the paramagnetic nitrosyl-heme complex in enzyme activation, J. Biol. Chem. 253:8433–8443.PubMedGoogle Scholar
  10. Craven, P. A., DeRubertis, F. R., and Pratt, D. W., 1979, Electron spin resonance study of the role of NO-catalase in the activation of guanylate cyclase by NaN3 and NH2OH: Modulation of enzyme responses by heme protein and their nitrosyl derivatives, J. Biol. Chem. 254:8213–8222.PubMedGoogle Scholar
  11. DeRubertis, F. R., and Craven, P. A., 1976, Calcium-independent modulation of cyclic GMP and activation of guanylate cyclase by nitrosoamines, Science 193:897–899.PubMedCrossRefGoogle Scholar
  12. Diamond, J., and Blisard, K. S., 1976, Effects of stimulant and relaxant drugs on tension and cyclic nucleotide levels in canine femoral artery, Mol. Pharmacol. 12:688–692.Google Scholar
  13. Diamond, J., and Holmes, T. G., 1975, Effects of potassium Chloride and smooth muscle relaxants on tension and cyclic nucleotide levels in rat myometrium, Can. J. Physiol. Pharmacol. 53:1099–1107.PubMedCrossRefGoogle Scholar
  14. Dunham, E. W., Haddox, M. K., and Goldberg, N. D., 1974, Alteration of vein cyclic 3’,5’-nucleotide concentrations during changes in contractility, Proc. Natl. Acad. Sci. U.S.A. 71:815–819.PubMedCrossRefGoogle Scholar
  15. Edwards, J. C, Barry. B. K., Gruetter, D. Y., Ohlstein, E. H., Baricos, W. H., and Ignarro, L. J., 1981, Activation of hepatic guanylate cyclase by nitrosyl-heme complexes: Comparison of unpurified and partially purified enzyme, Biochem. Pharmacol. 30:2531–2538.PubMedCrossRefGoogle Scholar
  16. Edwards, J. C, Ignarro, L. J., Wood, K. S., Hyman, A. L., and Kadowitz, P. J., 1984, Relaxation of intrapulmonary artery and vein by nitrogen oxide-containing vasodilators and cyclic GMP, J. Pharmacol. Exp. Ther., 228:33–42.PubMedGoogle Scholar
  17. Field, L., Dilts, R. V., Ravichandran, R., Lenhert, P. G., and Carnahan, G. E., 1978, An unusually stable thionitrite from N-acetyl-D,L-penicillamine; X-ray crystal and molecular structure of 2-(acetylamino)-2-carboxy-1,1-dimethylethyl thionitrite, J.C.S. Chem. Commun. 249–250.Google Scholar
  18. Furchgott, R. F., and Zawadzki, J. V., 1980, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine, Nature 288:373–376.PubMedCrossRefGoogle Scholar
  19. Furchgott, R. F., Zawadzki, J. V., and Cherry, P. D., 1981, Role of endothelium in the vasodilator response to acetylcholine, in: Vasodilatation (P. M. Vanhoutte and I. Leusen, eds.), Raven Press, New York, pp. 49–66.Google Scholar
  20. Galvas, P. E., and DiSalvo, J., 1983, Concentration and time-dependent relationships between isosorbide dinitrate-induced relaxation and formation of cyclic GMP in coronary arterial smooth muscle, J. Pharmacol. Exp. Ther. 224:373–378.PubMedGoogle Scholar
  21. Gerzer, R., Böhme, E., Hofmann, F., and Schultz, G., 1981a, Soluble guanylate cyclase purified from bovine lung contains heme and copper, FEBS Lett. 132:71–74.CrossRefGoogle Scholar
  22. Gerzer, R., Hofmann, F., and Schultz, G., 1981b, Purification of a soluble, sodium-nitroprusside-stimulated guanylate cyclase from bovine lung, Eur. J. Biochem. 116:479–486.CrossRefGoogle Scholar
  23. Gruetter, C. A., Barry, B. K., McNamara, D. B., Gruetter, D. Y., Kadowitz, P. J., and Ignarro, L. J., 1979, Relaxation of bovine coronary artery and activation of coronary arterial guanylate cyclase by nitric oxide, nitroprusside and a carcinogenic nitrosoamine, J. Cyclic Nucleotide Res. 5:211–224.PubMedGoogle Scholar
  24. Gruetter, C. A., Barry, B. K., McNamara, D. B., Kadowitz, P. J., and Ignarro, L. J., 1980, Coronary arterial relaxation and guanylate cyclase activation by cigarette smoke, N’-nitrosonornicotine and nitric oxide, J. Pharmacol. Exp. Ther. 214:9–15.PubMedGoogle Scholar
  25. Gruetter, C. A., Gruetter, D. Y., Lyon, J. E., Kadowitz, P. J., and Ignarro, L. J., 1981a, Relationship between cyclic guanosine 3’,5’-monophosphate formation and relaxation of coronary arterial smooth muscle by glyceryl trinitrate, nitroprusside, nitrite and nitric oxide: Effects of methylene blue and methemoglobin, J. Pharmacol. Exp. Ther. 219:181–186.Google Scholar
  26. Gruetter, C A., Kadowitz, P. J., and Ignarro, L. J., 1981b, Methylene blue inhibits coronary arterial relaxation and guanylate cyclase activation by nitroglycerin, sodium nitrite and amyl nitrite, Can. J. Physiol. Pharmacol. 59:150–156.CrossRefGoogle Scholar
  27. Heppel, L. A., and Hilmoe, R. J., 1950, Metabolism of inorganic nitrite and nitrate esters. II. The enzymatic reduction of nitroglycerin and erythritol tetranitrate by glutathione, J. Biol. Chem. 183:129–138.Google Scholar
  28. Ignarro, L. J., and Gruetter, C. A., 1980, Requirement of thiols for activation of coronary arterial guanylate cyclase by glyceryl trinitrate and sodium nitrite: Possible involvement of S-nitrosothiols, Biochim. Biophys. Acta 631:221–231.PubMedCrossRefGoogle Scholar
  29. Ignarro, L. J., Edwards, J. C., Gruetter, D. Y., Barry, B. K., and Gruetter, C. A., 1980a, Possible involvement of S-nitrosothiols in the activation of guanylate cyclase by nitroso compounds, FEBS Lett. 110:275–278.CrossRefGoogle Scholar
  30. Ignarro, L. J., Barry, B. K., Gruetter, D. Y., Edwards, J. C., Ohlstein, E. H., Gruetter, C. A., and Baricos, W. H., 1980b, Guanylate cyclase activation by nitroprusside and nitrosoguanidine is related to formation of S-nitrosothiol intermediates, Biochem. Biophys. Res. Commun. 94:93–100.CrossRefGoogle Scholar
  31. Ignarro, L. J., Lippton, H., Edwards, J. C., Baricos, W. H., Hyman, A. L., Kadowitz, P. J., and Gruetter, C. A., 1981a, Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: Evidence for the involvement of S-nitrosothiols as active intermediates, J. Pharmacol. Exp. Ther. 218:739–749.Google Scholar
  32. Ignarro, L. J., Barry, B. K., Gruetter, D. Y., Ohlstein, E. H., Gruetter, C. A., Kadowitz, P. J., and Baricos, W. H., 1981b, Selective alterations in responsiveness of guanylate cyclase to activation by nitroso compounds during enzyme purification, Biochim. Biophys. Acta 673:394–407.CrossRefGoogle Scholar
  33. Ignarro, L. J., Kadowitz, P. J., and Baricos, W. H., 1981c, Evidence that regulation of hepatic guanylate cyclase activity involves interactions between catalytic site-SH groups and both substrate and activator, Arch. Biochem. Biophys. 208:75–86.CrossRefGoogle Scholar
  34. Ignarro, L. J., Degnan, J. N., Baricos, W. H., Kadowitz, P. J., and Wolin, M. S., 1982a, Activation of purified guanylate cyclase by nitric oxide requires heme: Comparison of heme-deficient, heme-reconstituted and heme-containing forms of soluble enzyme from bovine lung, Biochim. Biophys. Acta 718:49–59.CrossRefGoogle Scholar
  35. Ignarro, L. J., Wood, K. S., and Wolin, M. S., 1982b, Activation of purified soluble guanylate cyclase by Protoporphyrin IX, Proc. Natl. Acad. Sci. U.S.A. 79:2870–2873.CrossRefGoogle Scholar
  36. Janis, R. A., and Diamond, J., 1979, Relationship between cyclic nucleotide levels and druginduced relaxation of smooth muscle, J. Pharmacol. Exp. Ther. 211:480–484.PubMedGoogle Scholar
  37. Kadowitz, P. J., Nandiwada, P., Gruetter, C. A., Ignarro, L. J., and Hyman, A. L., 1981, Pulmonary vasodilator responses to nitroprusside and nitroglycerin in the dog, J. Clin. Invest. 67:893–902.PubMedCrossRefGoogle Scholar
  38. Katsuki, S., and Murad, F., 1977, Regulation of adenosine cyclic 3’,5’-monophosphate and guanosine cyclic 3’,5’-monophosphate levels and contractility in bovine tracheal smooth muscle, Mol. Pharmacol. 13:330–341.PubMedGoogle Scholar
  39. Katsuki, S., Arnold, W., Mittal, C, and Murad, F., 1977, Stimulation of guanylate cyclase by sodium nitrosprusside, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine, J. Cyclic Nucleotide Res. 3:23–35.PubMedGoogle Scholar
  40. Kawachi, T., Kogure, K., Kamijo, Y., and Sugimura, T., 1970, The metabolism of N-methyl-N’-nitro-N-nitrosoguanidine in rats, Biochim. Biophys. Acta 222:409–415.PubMedCrossRefGoogle Scholar
  41. Keith, R. A., Burkman, A. M., Sokoloski, T. D., and Fertel, R. H., 1982, Vascular tolerance to nitroglycerin and cyclic GMP generation in rat aortic smooth muscle, J. Pharmacol. Exp. Ther. 221:525–531.PubMedGoogle Scholar
  42. Kimura, H., Mittal, C. K., and Murad, F., 1975a, Increases in cyclic GMP levels in brain and liver with sodium azide an activator of guanylate cyclase, Nature 257:700–702.CrossRefGoogle Scholar
  43. Kimura, H., Mittal, C. K., and Murad, F., 1975b, Activation of guanylate cyclase from rat liver and other tissues by sodium azide, J. Biol. Chem. 250:8016–8022.Google Scholar
  44. Kramer, G. L., and Wells, J. N., 1979, Effects of Phosphodiesterase inhibitors on cyclic nucleotide levels and relaxation of pig coronary arteries, Mol. Pharmacol. 16:813–822.PubMedGoogle Scholar
  45. Kruszyna, H., Kruszyna, R., and Smith, R. P., 1982, Nitroprusside increases cyclic guanylate monophosphate concentrations during relaxation of rabbit aortic strips and both effects are antagonized by cyanide, Anesthesiology 57:303–308.PubMedCrossRefGoogle Scholar
  46. Kukovetz, W. R., Poch, G., Holzmann, S., Wurm, A., and Rinner, I., 1978, Role of cyclic nucleotides in adenosine-mediated regulation of coronary flow, Adv. Cyclic Nucleotide Res. 9:397–409.PubMedGoogle Scholar
  47. Kukovetz, W. R., Poch, G., Holzmann, S., Wurm, A., and Rinner, I., 1979a, Cyclic nucleotides and coronary flow, in: Cyclic Nucleotides and Therapeutic Perspectives (G. Cehovic and G. A. Robison, eds.), Pergamon Press, Oxford, pp. 109–125.Google Scholar
  48. Kukovetz, W. R., Holzmann, S., Wurm, A., and Poch, G., 1979b, Prostacyclin increases cyclic AMP in coronary arteries, J. Cyclic Nucleotide Res. 5:469–476.Google Scholar
  49. Kukovetz, W. R., Holzmann. S., Wurm, A., and Poch, G., 1979c, Evidence for cyclic GMP mediated relaxant effects of nitro-compounds in coronary smooth muscle, Naunyn Schmiedebergs Arch. Pharmacol. 310:129–138.CrossRefGoogle Scholar
  50. Kukovetz, W. R., Poch, G., and Holzmann, S., 1981, Cyclic nucleotides and relaxation of vascular smooth muscle, in: Vasodilatation (P. M. Vanhoutte and I. Leusen, eds.), Raven Press, New York, pp. 339–353.Google Scholar
  51. Lawley, P. D., and Thatcher, C. J., 1970, Methylation of deoxyribonucleic acid in cultured mammalian cells by N-methyl-N’-nitro-N-nitrosoguanidine, Biochem. J. 116:693–707.PubMedGoogle Scholar
  52. Lee, T. P., Kuo, J. F., and Greengard, P., 1972, Role of muscarinic cholinergic receptors in regulation of guanosine 3’,5’-cyclic monophosphate content in mammalian brain, heart muscle, and intestinal smooth muscle, Proc. Natl. Acad. Sci. U.S.A. 69:3287–3291.PubMedCrossRefGoogle Scholar
  53. Lippton, H. L., Gruetter, C. A., Ignarro, L. J., Meyer, R. L., and Kadowitz, P. J., 1982, Vasodilator actions of several N-nitroso compounds, Can. J. Physiol. Pharmacol. 60:68–75.PubMedCrossRefGoogle Scholar
  54. Mackenzie, J. E., and Parratt, J. R., 1977, Comparative effects of glyceryl trinitrate on venous and arterial smooth muscle in vitro; relevance to antianginal activity, Br. J. Pharmacol. 60:155–160.PubMedCrossRefGoogle Scholar
  55. McCalla, D. R., Reuvers, A., and Kitai, R., 1968, Inactivation of biologically active Nmethyl-N-nitroso Compounds in aqueous Solution: Effect of various conditions of pH and illumination, Can. J. Biochem. 46:807–811.PubMedCrossRefGoogle Scholar
  56. Miki, N., Kawabe, Y., and Kuriyama, K., 1977, Activation of cerebral guanylate cyclase by nitric oxide, Biochem. Biophys. Res. Commun. 75:851–856.PubMedCrossRefGoogle Scholar
  57. Mittal, C. K., Kimura, H., and Murad, F., 1975, Requirement for a macromolecular factor for sodium azide activation of guanylate cyclase, J. Cyclic Nucleotide Res. 1:261–269.PubMedGoogle Scholar
  58. Mittal, C. K., Kimura, H., and Murad, F., 1977, Purification and properties of a protein required for sodium azide activation of guanylate cyclase, J. Biol. Chem. 252:4384–4390.PubMedGoogle Scholar
  59. Murad, F., Mittal, C. K., Arnold, W. P., Katsuki, S., and Kimura, H., 1978, Guanylate cyclase: Activation by azide, nitro Compounds, nitric oxide, and hydroxyl radical and inhibition by hemoglobin and myoglobin, Adv. Cyclic Nucleotide Res. 9:145–158.PubMedGoogle Scholar
  60. Nandiwada, P. A., Hyman, A. L., and Kadowitz, P. J., 1983, Pulmonary vasodilator responses to vagal Stimulation and acetylcholine in the cat, Circ. Res., 53:86–95.PubMedCrossRefGoogle Scholar
  61. Napoli, S. A., Gruetter, C. A., Ignarro, L. J., and Kadowitz, P. J., 1980, Relaxation of bovine coronary arterial smooth muscle by cyclic GMP, cyclic AMP and analogs, J. Pharmacol. Exp. Ther. 212:469–473.PubMedGoogle Scholar
  62. Needleman, P., 1976, Organic nitrate metabolism, Annu. Rev. Pharmacol. 16:81–93.CrossRefGoogle Scholar
  63. Needleman, P., and Johnson, E. M., Jr., 1973, Mechanism of tolerance development to organic nitrates, J. Pharmacol. Exp. Ther. 184:709–715.PubMedGoogle Scholar
  64. Needleman, P., Jakschik, B., and Johnson, E. M., 1973, Sulfhydryl requirement for relaxation of vascular smooth muscle, J. Pharmacol. Exp. Ther. 187:324–331.PubMedGoogle Scholar
  65. Neurath, G. B., Dunger, M., and Pein, F. G., 1976, Interaction of nitrogen oxides, oxygen and amines in gaseous mixtures, IARC Sci. Publ. 14:215–225.PubMedGoogle Scholar
  66. Ohlstein, E. H., Wood, K. S., and Ignarro, L. J., 1982, Purification and properties of hemedeficient hepatic soluble guanylate cyclase: Effects of heme and other factors on enzyme activation by NO, NO-heme, and Protoporphyrin IX, Arch. Biochem. Biophys. 218:187–198.PubMedCrossRefGoogle Scholar
  67. Pagani, M., Vatner, S. F., and Braunwald, E., 1978, Hemodynamic effects of intravenous sodium nitroprusside in the conscious dog, Circulation 57:144–151.PubMedCrossRefGoogle Scholar
  68. Robinson, B. F., Collier, J. G., and Dobbs, R. J., 1979, Comparative dilator effects of Verapamil and sodium nitroprusside in forearm arterial bed and dorsal hand veins in man: Functional differences between vascular smooth muscle in arterioles and veins, Cardiovasc. Res. 13:16–21.PubMedCrossRefGoogle Scholar
  69. Robison, G. A., Butcher, R. W., and Sutherland, E. W., 1968, The role of cyclic AMP in adipose tissue and smooth muscle, Pharmacologist 10:145–146.Google Scholar
  70. Saville, B., 1958, A scheme for the colorimetric determination of microgram amounts of thiols, Analyst 83:670–672.CrossRefGoogle Scholar
  71. Schoental, R., and Rive, D. J., 1965, Interaction of N-alkyl-N-nitrosourethanes with thiols, Biochem. J. 97:466–474.PubMedGoogle Scholar
  72. Schultz, G., Hardman, J. G., and Sutherland, E. W., 1973, Cyclic nucleotides and smooth muscle function, in: Asthma, Physiology, Immunopharmacology, and Treatment (K. F. Austen and L. M. Lichtenstein, eds.), Academic Press, New York, pp. 123–138.Google Scholar
  73. Schultz, K. D., Schultz, K., and Schultz, G., 1977, Sodium nitrosprusside and other smooth muscle-relaxants increase cyclic GMP levels in rat ductus deferens, Nature 265:750–751.PubMedCrossRefGoogle Scholar
  74. Schultz, K. D., Böhme, E., Kreye, V. A. W., and Schultz, G., 1979, Relaxation of hormonally stimulated smooth muscular tissues by the 8-bromo derivative of cyclic GMP, Naunyn Schmiedebergs Arch. Pharmacol. 306:1–9.PubMedCrossRefGoogle Scholar
  75. Schultz, U., and McCalla, D. R., 1969, Reactions of cysteine with N-methyl-N-nitrosop-toluenesulfonamide and N-methyl-N’-nitro-N-nitrosoguanidine, Can. J. Chem. 47:2021–2027.CrossRefGoogle Scholar
  76. Spies, C, Schultz, K. D., and Schultz, G., 1980, Inhibitory effects of mepacrine and eicosatetraynoic acid on cyclic GMP elevations caused by calcium and hormonal factors in rat ductus deferens, Naunyn Schmiedebergs Arch. Pharmacol. 311:71–77.PubMedCrossRefGoogle Scholar
  77. Wheeler, G. P., and Bowdon, B. J., 1972, Comparison of the effects of cysteine upon decomposition of nitrosoureas and of 1-methy 1-3-nitro-1-nitrosoguanidine, Biochem. Pharmacol. 21:265–267.PubMedCrossRefGoogle Scholar
  78. Wolin, M. S., Wood, K. S., and Ignarro, L. J., 1982, Guanylate cyclase from bovine lung: A kinetic analysis of the regulation of the purified soluble enzyme by Protoporphyrin IX, heme and nitrosyl-heme, J. Biol. Chem. 257:13312–13320.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Louis J. Ignarro
    • 1
  • Carl A. Gruetter
    • 1
  • Albert L. Hyman
    • 1
  • Philip J. Kadowitz
    • 1
  1. 1.Departments of Pharmacology and SurgeryTulane University School of MedicineNew OrleansUSA

Personalised recommendations