Advertisement

Pharmacological and Biochemical Characterization of Two Categories of Dopamine Receptor

  • John W. Kebabian
Part of the New Horizons in Therapeutics book series (NHTH)

Abstract

At present, dopamine is probably the most studied neurotransmitter within the central nervous system (Horn et al., 1979). Anatomically, dopaminergic neuronal pathways have been defined in many brain regions. Biochemically, minute quantities of dopamine or its precursors and metabolites can be quantified. Changes in the concentration of any of these substances can be detected and correlated with alterations in physiological activity of dopaminergic neurons. Physiologically, various roles have been proposed for dopamine in several brain regions. Pharmacologically, drugs mimicking or antagonizing the effects of dopamine have been identified. Because dopamine regulates the physiological activity of human brain, dopaminergic agonists and antagonists are used as therapeutic agents in clinical medicine. L-DOPA, the precursor of dopamine, as weIl as bromocriptine, a dopaminergic agonist, are effective in treating Parkinsonism; dopaminergic antagonists are used as antiemetics and antipsychotics. Furthermore, because dopamine regulates physiological activity in peripheral tissue, dopamine is used in the treatment of shock, and dopaminergic agonists are used to treat hyperprolactinemia, acromegaly, and to arrest the growth of prolactin-secreting adenomata.

Keywords

Dopamine Receptor Adenylate Cyclase Cholera Toxin Adenylate Cyclase Activity Intermediate Lobe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlquist, R. P., 1948, A study of the adrenotopic receptors, Am. J. Physiol. 153:586–600.PubMedGoogle Scholar
  2. Ahlquist, R. P., 1981, Adrenoceptors, in: Towards Understanding Receptors (J. W. Lamble, ed.), Elsevier North Holland, Amsterdam, pp. 49–52.Google Scholar
  3. Anden, N. E., Dahlstrom, A., Fuxe, K., and Larsson, K., 1966, Functional role of the nigro neostriatal dopamine neurons, Acta Pharmacol. Toxicol. (Kbh.) 24:263–274.CrossRefGoogle Scholar
  4. Bacq, Z. M., 1981, Early work on the adrenergic mediator: How to go wrong, in: Towards Understanding Receptors (J. W. Lamble, ed.), Elsevier North Holland, Amsterdam, pp. 44–48.Google Scholar
  5. Baumgarten, G., Bjorklund, A., Holstein, A. F., and Nobin, A., 1972, Organization and ultrastructural identification of the catecholamine nerve terminals in the neural lobe and pars intermedia of the rat pituitary, Z. Zellforsch. 126:483–517.PubMedCrossRefGoogle Scholar
  6. Bertler, A., and Rosengren, E., 1959, Occurrence and distribution of dopamine in brain and other tissues, Experientia 15:10–11.PubMedCrossRefGoogle Scholar
  7. Bower, A., Hadley, M. E., and Hruby, V. J., 1974, Biogenic amines and control of melanophore stimulating hormone release, Science 184:70–72.PubMedCrossRefGoogle Scholar
  8. Brown, E. M., Attie, M. F., Reen, S., Gardner, D. G., Kebabian, J. W., and Aurbach, G. D., 1980, Characterization of dopaminergic receptors in dispersed bovine parathyroid cells, Mol. Pharmacol. 18:335–340.PubMedGoogle Scholar
  9. Brown, E. M., and Dawson-Hughes, B. F., 1983, Dopamine receptor-mediated activation of adenylate cyclase, cAMP accumulation and PTH secretion in dispersed bovine parathyroid cells, in: Multiple Dopamine Receptors and Modulation of Peripheral Dopamine Receptors (J. W. Kebabian and C. Kaiser, eds.), American Chemical Society, Washington pp. 1–21.Google Scholar
  10. Brown, J. H., and Makman, M., 1972, Stimulation by dopamine of adenylate cyclase in retinal homogenates and of adenosine-3’,5’-cyclic monophosphate formation in intact retina, Proc. Natl. Acad. Sci. U.S.A. 69:539–543.PubMedCrossRefGoogle Scholar
  11. Carlsson, A., Lindqvist, M., Magnusson, T., and Waldeck, B., 1958, On the presence of 3-hydroxytyramine in brain, Science 127:471. Caron, M. G., Beaulieu, M., Raymond, V., Gagne, B., Drouin, J., Lefkowitz, R. J., and Labrie, F., 1978, Dopaminergic receptors in the anterior pituitary gland. Correlation of [3H]-dihydroergocryptine binding with the dopaminergic control of prolactin release, J. Biol. Chem. 253:2244–2253.PubMedCrossRefGoogle Scholar
  12. Clement-Cormier, Y. C, Kebabian, J. W., Petzold, G. L., and Greengard, P., 1974, Dopamine-sensitive adenylate cyclase in mammalian brain: A possible site of action of antipsychotic drugs, Proc. Natl. Acad. Sci. U.S.A. 71:1113–1117.PubMedCrossRefGoogle Scholar
  13. Clement-Cormier, Y. C, Parrish, R. G., Petzold, G. L., Kebabian, J. W., and Greengard, F., 1975, Characterization of a dopamine-sensitive adenylate cyclase in the rat caudate nucleus, J. Neurochem. 25:143–149.PubMedCrossRefGoogle Scholar
  14. Cools, A. R., and Van Rossum, J. M., 1976, Excitation-mediating and inhibition-mediating dopamine receptors: A new coneept towards a better understanding of electrophysiological, biochemical, pharmacological, functional and clinical data, Psychopharmacologia (Berl.) 45:243–254.PubMedCrossRefGoogle Scholar
  15. Costall, B., and Naylor, R. J., 1979, Behavioural aspects of dopamine agonists and antagonists, in: The Neurobiology of Dopamine (A. S. Horn, J. Korf, and B. H. C. Westerink, eds.), Academic Press, London, pp. 555–576.Google Scholar
  16. Cote, T. E., Munemura, M., Eskay, R. L., and Kebabian, J. W., 1980, Biochemical identification of the β-adrenoeeptor and evidence for the involvement of an adenosine 3’,5’— monophosphate system in the β-adrenergically induced release of a-melanocyte-stimulating hormone in the intermediate lobe of the rat pituitary gland, Endocrinology 107:108–116.PubMedCrossRefGoogle Scholar
  17. Cote, T. E., Grewe, C. W., and Kebabian, J. W., 1981, Stimulation of a D-2 dopamine receptor in the intermediate lobe of the rat pituitary gland decreases the responsiveness of the β-adrenoceptor: Biochemical mechanism, Endocrinology 108:420–426.PubMedCrossRefGoogle Scholar
  18. Cote, T. E., Grewe, C. W., and Kebabian, J. W., 1982a, Guanyl nucleotides participate in the β-adrenergic Stimulation of adenylate cyclase activity in the intermediate lobe of the rat pituitary gland, Endocrinology 110:805–811.CrossRefGoogle Scholar
  19. Cote, T. E., Grewe, C. W., Tsuruta, K., Stoof, J. C, Eskay, R. L., and Kebabian, J. W., 1982b, D-2 dopamine receptor-mediated inhibition of adenylate cyclase activity in the intermediate lobe of the rat pituitary gland requires GTP, Endocrinology 110:812–819.CrossRefGoogle Scholar
  20. Cote, T. E., Eskay, R. L., Frey, E. A., Grewe, C. W., Munemura, M., Stoof, J. C, Tsuruta, K., and Kebabian, J. W., 1982c, Biochemical and physiological studies of the betaadrenoceptor and the D-2 dopamine receptor in the intermediate lobe of the rat pituitary gland: A review, Neuroendocrinology 35:217–224.CrossRefGoogle Scholar
  21. Dale, H. H., 1906, On some physiological actions of ergot, J. Physiol. (Lond.) 34:163–206.Google Scholar
  22. DeLean, A., Kilpatrick, B. F., and Caron, M., 1982, Guanine nucleotides regulate both dopaminergic agonist and antagonist binding in porcine anterior pituitary, Endocrinology 110:1064–1066.Google Scholar
  23. Denef, C, and Follebouckt, J.-J., 1978, Differential effects of dopamine antagonists on prolactin secretion from cultured rat pituitary cells, Life Sci. 22:431–435.CrossRefGoogle Scholar
  24. Ernst, A. M., 1969, The role of biogenic amines in the extra-pyramidal system, Acta Physiol Pharmacol. (Neerl) 15:141–154.Google Scholar
  25. Euvrard, C, Ferland, L., Di Paolo, T., Beaulieu, M., Labrie, F., Oberlander, C, Raynaud, J. F., and Boissier, J. R., 1980, Activity of two new potent dopaminergic agonists at the striatal and anterior pituitary levels, Neuropharmacology 19:379–386.PubMedCrossRefGoogle Scholar
  26. Frey, E. A., Cote, T. E., Grewe, C. W., and Kebabian, J. W., 1982, [3H]Spiroperidol identifies a D-2 dopamine receptor inhibiting adenylate cyclase activity in the intermediate lobe of the rat pituitary gland, Endocrinology 110:1897–1904.PubMedCrossRefGoogle Scholar
  27. Goldberg, L. I., 1972, Cardiovascular and renal actions of dopamine: Potential clinical applications, Pharmacol. Rev. 24:1–29.PubMedGoogle Scholar
  28. Goldberg, L. I., 1979, Introductory lecture: The dopamine vascular receptor: Agonists and Antagonists, in: Peripheral Dopaminergic Receptors. Advances in the Biosciences. Volume 20 (J.-L. Imbs and J. Schwartz, eds.), Pergamon Press, Oxford, pp. 1–12.Google Scholar
  29. Goldberg, L. I., and Kohli, J. D., 1979, Peripheral pre-and postsynaptic dopamine receptors: Are they different from dopamine receptors in the central nervous system?, Commun. Psychopharmacol. 3:447–456.PubMedGoogle Scholar
  30. Goldberg, L. I., Musgrave, G. E., and Kohli, J. D., 1979, Antagonism of dopamine-induced renal vasodilation in the dog by bulbocapnine and sulpiride, in: Sulpiride and Other Benzamides (P. F. Spano, M. Trabucchi, G. U. Corsini, and G. L. Gessa, eds.); Itahan Brain Research Foundation Press, Milan, pp. 73–81.Google Scholar
  31. Goldberg, L. I., and Kohli, J. D., 1983, Peripheral dopamine receptors: A Classification based on potency series and specific antagonism, Trends Pharmacol. Sci. 4:64–66.Google Scholar
  32. Goldman, M. E., Beaulieu, M., Kebabian, J. W., and Eskay, R. L., 1983, α-Melanocytestimulating hormone-like peptides in the intermediate lobe of the rat pituitary gland: Characterization of content and release in vitro, Endocrinology 112:435–441.PubMedCrossRefGoogle Scholar
  33. Goodale, D. E., Rusterholz, D. B., Long, J. P., Flynn, J. R., Walsh, B., Cannon, J. G., and Lee, T. L., 1980, Neurochemical and behavioral evidence for a selective presynaptic dopamine receptor agonist, Science 210:1141–1143.PubMedCrossRefGoogle Scholar
  34. Grewe, C. W., and Kebabian, J. W., 1982, Dopamine stimulates production of cyclic AMP by the salivary gland of the cockroach, Nauphoeta cinerea, Cell. Mol. Neurobiol. 2:65–69.CrossRefGoogle Scholar
  35. Grewe, C. W., Frey, E. A., Cote, T. E., and Kebabian, J. W., 1982, YM-09151-2: A potent antagonist for a peripheral D2-dopamine receptor, Eur. J. Pharmacol. 81:149–152.PubMedCrossRefGoogle Scholar
  36. Hahn, R. A., Wardell, J. R., Sarau, H. M., and Ridley, P. T., 1982, Characterization of the peripheral and central effects of SK&F 82526, a novel dopamine receptor agonist, J. Pharmacol. Exp. Ther. 223:305–313.PubMedGoogle Scholar
  37. Hahn, R. A., MacDonald, B. R., and Martin, M. A., 1983, Antihypertensive activity of LY 141865, a selective presynaptic dopamine receptor agonist, J. Pharmacol. Exp. Ther. 224:206–214.PubMedGoogle Scholar
  38. Horn, A. S., Korf, J., and Westerink, B. H. C. (eds.), 1979, The Neurobiology of Dopamine, Academic Press, London.Google Scholar
  39. Iorio, L. C, Houser, V., Korduba, C. A., Leitz, F., and Barnett, A., 1981, SCH 23390, a benzazepine with atypical effects on dopaminergic systems, Pharmacologist 23:137.Google Scholar
  40. Iorio, L. C, Barnett, A., Leitz, F. H., Houser, V. P., and Korduba, C. A., 1983, SCH 23390, a potential benzazepine antipsychotic with unique interactions on dopaminergic systems, Pharmacol. Exp. Ther. 226:462–468.Google Scholar
  41. Kebabian, J. W., and Calne, D. B., 1979, Multiple receptors for dopamine, Nature 277:93–96.PubMedCrossRefGoogle Scholar
  42. Kebabian, J. W., and Greengard, P., 1971, Dopamine-sensitive adenyl cyclase: Possible role in synaptic transmission, Science 174:1346–1349.PubMedCrossRefGoogle Scholar
  43. Kebabian, J. W., Petzold, G. L., and Greengard, P., 1972, Dopamine-sensitive adenylate cyclase in the caudate nucleus of rat brain, and its similarity to the “dopamine receptor.” Proc. Natl. Acad. Sci. U.S.A. 69:2145–2149.PubMedCrossRefGoogle Scholar
  44. Kebabian, J. W., Calne, D. B., and Kebabian, P. R., 1977, Lergotrile mesylate: An in vivo dopamine agonist which blocks dopamine receptors in vitro, Commun. Psychopharmacol. 1:311–318.Google Scholar
  45. Kebabian, J. W., Chen, T. C, and Cote, T. E., 1979, Endogenous guanyl nucleotides: Components of the striatum which confer dopamine sensitivity to adenylate cyclase, Commun. Psychopharmacol. 3:421–428.PubMedGoogle Scholar
  46. Kebabian, J. W., Miyazaki, K., and Grewe, C. W., 1982, 6,7-dihydroxy-2-dimethylaminotetralin (TL-99) stimulates postjunctional D-1 and D-2 dopamine receptors, Neurochem. Int. 2:227–229.Google Scholar
  47. Kohli, J. D., Takeda, H., Ozaki, N., and Goldberg, L. I., 1979, In vitro study with semirigid rotomeric conformational analogues of dopamine, in: Peripheral Dopaminergic Receptors, Advances in the Biosciences, Volume 20 (J.-L. Imbs and J. Schwartz, eds.), Pergamon Press, Oxford, pp. 143–149.Google Scholar
  48. Lands, A. M., Arnold, A., McAuliff, Luduena, F. P., and Brown, T. G., 1967, Differentiation of receptor systems activated by sympathomimetic amines, Nature 214:597–598.PubMedCrossRefGoogle Scholar
  49. Langer, S. Z., 1981, Presynaptic regulation of the release of catecholamines, Pharmacol. Rev. 32:337–362.Google Scholar
  50. Langley, J. N., 1906, On nerve endings and on special excitable substances in cells, Proc R. Soc. (Lond.) [Biol.] 78:170–194.CrossRefGoogle Scholar
  51. Lightman, S. L., Ninkovic, M., and Hunt, S. P., 1982, Localization of [3H]spiperone binding sites in the intermediate lobe of the rat pituitary gland, Neurosci. Lett. 32:99–102.PubMedCrossRefGoogle Scholar
  52. MacLeod, R. M., 1976, Regulation of prolactin release, in: Frontiers in Neuroendocrinology, Volume 4 (L. Martini and W. F. Ganong, eds.), Raven Press, New York, 169–194.Google Scholar
  53. Meitzer, H. Y., Mikuni, M., Simonovic, M., and Gudelsky, G. A., 1983, Effect of a novel benzamide, YM-09151-2, on rat serum prolactin levels, Life Sci. 32:1015–1021.CrossRefGoogle Scholar
  54. Meunier, H., and Labrie, F., 1982a, Specificity of the β2-adrenergic receptor stimulating cyclic AMP accumulation in the intermediate lobe of the rat pituitary gland, Eur. J. Pharmacol 81:411–420.CrossRefGoogle Scholar
  55. Meunier, H., and Labrie, F., 1982b, The dopamine receptor in the intermediate lobe of the rat pituitary gland is negatively coupled to adenylate cyclase, Life Sci. 30:963–968.CrossRefGoogle Scholar
  56. Miller, R. J., and McDermed, J. D., 1979, Dopamine-sensitive adenylate cyclase, in: The Neurobiology of Dopamine (A. S. Horn, J. Korf, and B. H. C. Westerink, eds.), Academic Press, New York, pp. 159–177.Google Scholar
  57. Munemura, M., Cote, T. E., Tsuruta, K., Eskay, R. L., and Kebabian, J. K., 1980a, The dopamine receptor in the intermediate lobe of the rat pituitary gland: Pharmacological characterization, Endocrinology 107:1676–1683.CrossRefGoogle Scholar
  58. Munemura, M., Eskay, R. L., and Kebabian, J. W., 1980b, Release of α-melanocyte-stimulating hormone from dispersed cells of the intermediate lobe of the rat pituitary gland: Involvement of catecholamines and adenosine 3’,5’-monophosphate, Endocrinology 106:1795–1803.CrossRefGoogle Scholar
  59. Peng Loh, Y., and Gainer, H., 1977, Biosynthesis, processing, and control of release of melanotropic peptides in the neurointermediate lobe of Xenopus laevis, J. Gen. Physiol. 70:37–58.CrossRefGoogle Scholar
  60. Rodbell, M., 1980, The role of hormone receptors and GTP-regulatory proteins in membrane transduction, Nature 284:17–22.PubMedCrossRefGoogle Scholar
  61. Scatton, B., 1982, Effect of dopamine agonists and neuroleptic agents on striatal acetylcholine transmission in the rat: Evidence against dopamine receptor multiplicity, J. Pharmacol. Exp. Ther. 220:197–202.PubMedGoogle Scholar
  62. Seeman, P., 1980, Brain dopamine receptors, Pharmacol. Rev. 32:229–313.PubMedGoogle Scholar
  63. Sethy, V. H., 1979, Regulation of striatal acetylcholine concentration by D-2 dopamine receptors, Eur. J. Pharmacol. 60:397–398.PubMedCrossRefGoogle Scholar
  64. Setler, P. E., Sarau, H. M., Zirkle, C. L., and Saunders, H. L., 1978, The central effects of a novel dopamine agonist, Eur. J. Pharmacol. 50:419–430.PubMedCrossRefGoogle Scholar
  65. Shepperson, N. B., Duval, N., Massingham, R., and Langer, S. Z., 1982, Differential blocking effects of several dopamine receptor antagonists for peripheral pre-and postsynaptic dopamine receptors in anesthetized dogs, J. Pharmacol. Exp. Ther. 221:753–761.PubMedGoogle Scholar
  66. Sibley, D. R., and Creese, I., 1980, Dopamine receptor binding in bovine intermediate lobe pituitary membranes, Endocrinology 107:1405–1409.PubMedCrossRefGoogle Scholar
  67. Sibley, D. R., DeLean, A., and Creese, I., 1982a, Anterior pituitary dopamine receptors. Demonstration of interconvertible high and low affmity states of the D-2 dopamine receptor, J. Biol. Chem. 257:6351–6361.Google Scholar
  68. Sibley, D. R., Leff, S. E., and Creese, I., 1982b, Interactions of novel dopaminergic ligands with D-l and D-2 dopamine receptors, Life Sci. 31:637–645.CrossRefGoogle Scholar
  69. Spano, P. F., Frattola, L., Govoni, S., Tonon, G. C, and Trabucchi, M., 1979, Dopaminergic ergot derivatives: Selective agonists of a new class of dopamine receptors, in: Dopaminergic Ergot Derivatives and Motor Function, Wenner-Gren Center International Symposium Series, Volume 31 (K. Fuxe and D. B. Calne, eds.), Pergamon Press, Oxford, pp. 159–171.Google Scholar
  70. Stephanini, E., Devoto, F., Marchisio, A. M., Vernaleone, F., and Collu, R., 1980, [3H]-Spiroperidol binding to a putative dopaminergic receptor in rat pituitary gland, Life Sci. 26:583–587.CrossRefGoogle Scholar
  71. Stoof, J. C, and Kebabian, J. W., 1981, Opposing roles for D-1 and D-2 dopamine receptors in efflux of cyclic AMP from rat neostriatum, Nature 294:366–368.PubMedCrossRefGoogle Scholar
  72. Stoof, J. C, and Kebabian, J. W., 1982, Independent in vitro regulation by the D-2 dopamine receptor of dopamine-stimulated efflux of cyclic AMP and K+-stimulated release of acetylcholine from rat neostriatum, Brain Res. 250:263–270.PubMedCrossRefGoogle Scholar
  73. Teranishi, T., Negishi, K., and Kato, S., 1983, Dopamine modulates S-potential amplitude and dye-coupling between exteraal horizontal cells in carp retina, Nature 301:243–246.PubMedCrossRefGoogle Scholar
  74. Tsuruta, K., Frey, E. A., Grewe, C. W., Cote, T. E., Eskay, R. L., and Kebabian, J. W., 1981, Evidence that LY-141865 specifically stimulates the D-2 dopamine receptor, Nature 292:463–465.Google Scholar
  75. Tsuruta, K., Grewe, C. W., and Cote, T. E., Eskay, R. L., and Kebabian, J. W., 1982, Coordinated action of calcium ion and cyclic adenosine 3’,5 ’monophosphate upon the release of α-melanocyte stimulating hormone from the intermediate lobe of the rat pituitary gland, Endocrinology 110:1133–1140.PubMedCrossRefGoogle Scholar
  76. Ungerstedt, U., 1971, Postsynaptic supersensitivity after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system, Acta Physiol. Scand. [Suppl.] 367:69–93.Google Scholar
  77. Watling, K. J., and Dowling, J. E., 1981, Dopaminergic mechanisms in teleost retina I. Dopamine-sensitive adenylate cyclase in homogenates of carp retina; effects of agonists, antagonists and ergots, J. Neurochem. 36:559–568.PubMedCrossRefGoogle Scholar
  78. Watling, K. J., and Williams, M., 1982, Interaction of the putative dopamine autoreceptor agonists, 3-PPP and TL-99, with the dopamine-sensitive adenylate cyclase of carp retina, Eur. J. Pharmacol. 77:321–326.PubMedCrossRefGoogle Scholar
  79. Watling, K. J., 1983, A function for dopamine-sensitive adenylate cyclase in the retina?, Trends Pharmacol. Sci. 4:328–329.CrossRefGoogle Scholar
  80. Weinstock, J., Wilson, J. W., Ladd, D. L., Brenner, M., Ackerman, D. M., Blumberg, A. L., Brennan, F. T., Hahn, R. A., Heible, J. P., Sarau, H. M., and Wiebelhaus, V. D., 1983, Dopaminergic benzazepines with divergent cardiovascular profiles, in: Multiple Dopamine Receptors and Modulation of Peripheral Dopamine Receptors (J. W. Kebabian and C. Kaiser, eds.), American Chemical Society, Washington pp. 157–169.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • John W. Kebabian
    • 1
  1. 1.Experimental Therapeutics Branch, National Institute of Neurological and Communicative Disorders and StrokeNational Institutes of HealthBethesdaUSA

Personalised recommendations