Colon pp 167-186 | Cite as

The Regulatory Peptides of the Colon

  • Julia M. Polak
  • Anne E. Bishop
  • S. R. Bloom
Part of the Topics in Gastroenterology book series (TGEN)


During recent years a large number of regulatory peptides, including vasoactive intestinal polypeptide (VIP), substance P, enkephalin, neurotensin, bombesin, enteroglu-cagon (EG), and somatostatin, have been discovered in a variety of different tissues in man and many other mammalian species.1 These peptides have a widespread distribution in the brain and/or periphery. They can be found in typical endocrine cells or nerve fibers in, for example, lung, urogenital tract, adrenal and salivary glands, as well as the gut and pancreas.2 The colon is well provided with the majority of these peptides.


Myenteric Plexus Pancreatic Polypeptide Regulatory Peptide Rectal Carcinoid Pancreatic Enzyme Secretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Polak JM, Bloom SR: The diffuse neuroendocrine system. J Histochem Cytochem 27(10):1398, 1979.PubMedCrossRefGoogle Scholar
  2. 2.
    Polak JM, Bloom SR: Peptidergic nerves of the gastrointestinal tract. Invest Cell Pathol 1:301, 1978.Google Scholar
  3. 3.
    Facer P, Bishop AE, Polak JM: Immunocytochemistry: Its applications and drawbacks for the study of gut endocrinology. Invest Cell Pathol 3:13, 1980.PubMedGoogle Scholar
  4. 4.
    Pearse AGE, Polak JM: Bifunctional reagents as vapour- and liquid-phase fixatives for immunocytochemistry. Histochem J 7:179, 1975.PubMedCrossRefGoogle Scholar
  5. 5.
    Sternberger LA (ed): Immunocytochemistry. Englewood Cliffs, NJ, Prentice-Hall Inc, 1974.Google Scholar
  6. 6.
    Kohler G, Milstein C: Continuous cultures of fused cells secreting antibody of predefined specificity. Nature (London) 256: 495, 1975.CrossRefGoogle Scholar
  7. 7.
    Said SI, Mutt V: Long acting vasodilator peptide from lung tissue. Nature (London) 224: 699, 1969.CrossRefGoogle Scholar
  8. 8.
    Bryant MG, Bloom SR, Polak JM, et al: Possible dual role for VIP as a gastrointestinal hormone and neurotransmitter substance. Lancet 1:991, 1976.PubMedCrossRefGoogle Scholar
  9. 9.
    Said SI: VIP: Overview in Bloom SR (ed): Gut Hormones. Edinburgh, Churchill Livingstone, 1978, p 465.Google Scholar
  10. 10.
    Jessen KR, Polak JM, Van Noorden S, et al: Evidence that peptide-containing neurons connect the two ganglionated plexuses of the enteric nervous system. Nature (London) 283: 391, 1980.CrossRefGoogle Scholar
  11. 11.
    Cohen ML, Landry AS: Vasoactive intestinal polypeptide increased tonE, enhancement of acetylcholine release and stimulation of adenylate cyclase in intestinal smooth muscule. Life Sci 26:811, 1980.PubMedCrossRefGoogle Scholar
  12. 12.
    Fahrenkrug J, Galbo H, Hoist JJ, et al: Influence of the autonomic nervous system on the release of vasoactive intestinal polypeptide from porcine gastrointestinal tract. J Physiol 280:405, 1978.PubMedGoogle Scholar
  13. 13.
    Bloom SR, Polak JM, Pearse AGE: Vasoactive intestinal polypeptide and the watery diarrhoea syndrome. Lancet 2:14, 1973.PubMedCrossRefGoogle Scholar
  14. 14.
    Simon B, Kather H: Human colonic adenylate cyclase. Stimulation of enzyme activity by vasoactive intestinal polypeptide and various prostaglandins via distinct receptor sites. Digestion 20:62, 1980.PubMedCrossRefGoogle Scholar
  15. 15.
    Polak JM, Bishop AE, Bryant MG, et al: Abnormalities of VIP, substance P, enteroglucagon and somatostatin containing tissue in Hirschsprung’s disease. Gastroenterology 78(5):1238, 1980.Google Scholar
  16. 16.
    Long RG, Bishop AE, Barnes AJ, et al: Neural and hormonal peptides in rectal biopsy specimens from patients with Chagas’ disease and chronic autonomic failure. Lancet 1:559, 1980.PubMedCrossRefGoogle Scholar
  17. 17.
    Bishop AE, Polak JM, Bryant MG, et al: Abnormalities of VIP nerves in Crohn’s disease. Gastroenterology 79:853, 1980.PubMedGoogle Scholar
  18. 18.
    Euler US, Gaddum JH: An unidentified depressor substance in certain tissue extracts. J Physiol 192:74, 1931.Google Scholar
  19. 19.
    Leeman SE, Hammerschlag R: Stimulation of salivary secretion by a factor extracted from hypothalamic tissue. Endocrinology 81:803, 1967.PubMedCrossRefGoogle Scholar
  20. 20.
    Otsuka M, Konishi S, Takahashi T: Hypothalamic substance P as a candidate for transmitter of primary afferent neurons. Fed Proc 34:1922, 1975.PubMedGoogle Scholar
  21. 21.
    Polak JM, Bloom SR: The hormones of the gastrointestinal tract, in Duthie HL, Wormsley KG (eds): Scientific Basis of Gastroenterology. Edinburgh, Churchill Livingstone, 1979, p 71.Google Scholar
  22. 22.
    Akande B, Modlin IM, Jaffe BM: Release of substance P following a meal. Gastroenterology 78(5):1130, 1980.Google Scholar
  23. 23.
    Heitz PhH, Polak JM, Timson CM, et al: Enterochromaffin cells as the endocrine source of gastrointestinal substance P. Progr Histochem Cytochem 49:343, 1976.CrossRefGoogle Scholar
  24. 24.
    Wilander E, Portela-Gomes G, Grimelius L, et al: Enteroglucagon and substance P-like immuno-reactivity in argentaffin and argyrophil rectal carcinoids. Virchows Arch B 25:117, 1977.Google Scholar
  25. 25.
    Brazeau P, Vale W, Burgus R, et al: Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179:77, 1977.CrossRefGoogle Scholar
  26. 26.
    Bloom SR, Polak JM: Alimentary control system, in Sircus W, Smith AN (eds): Scientific Foundations of Gastroenterology. London, William Heinemann Medical Books Ltd, 1980, p. 101.Google Scholar
  27. 27.
    Larsson LI, Goltermann N, de Magistris L, et al: Somatostatin cell processes as pathways for paracrine secretion. Science 205:1393, 1979.PubMedCrossRefGoogle Scholar
  28. 28.
    Dayal Y, O’Briain DS, Wolfe HJ, et al: Carcinoid tumors: A comparison of their immunocytochemical characteristics. Lab Invest 42(1):111, 1980.Google Scholar
  29. 29.
    Lachat JJ, Goncalves RP: Influence of autonomic denervation upon the kinetics of the ileal epithelium of the rat. Cell Tissue Res 192:285, 1978.PubMedCrossRefGoogle Scholar
  30. 30.
    Tutton PJM: Neural stimulation of mitotic activity in the crypts of Lieberkuhn in rat jejunum. Cell Tissue Kinet 7:125, 1974.PubMedGoogle Scholar
  31. 31.
    Moody AJ, Jacobsen H, Sundry FS: Gastric glucagon and gut glucagon-like immunoreactivity, in Bloom SR(ed): Gut Hormones. Edinburgh, Churchill Livingstone, 1978, p 369.Google Scholar
  32. 32.
    Gleeson MH, Bloom SR, Polak JM, et al: Endocrine tumor in kidney affecting small bowel structure, motility and absorptive function. Gut 12:773, 1971.PubMedCrossRefGoogle Scholar
  33. 33.
    Besterman HS, Sarson DL, Cleary J, et al: The gut hormone profile in morbid obesity and following jejuno-ileal by-pass. Scand J Gastroenterol 13(suppl 49): 15, 1978.Google Scholar
  34. 34.
    Jacobs LR, Polak JM, Bloom SR, et al: Does enteroglucagon play a trophic role in intestinal adaptation? Clin Sci Mol Med 50:14, 1976.Google Scholar
  35. 35.
    Besterman HS, Sarson DL, Bloom SR: Enteroglucagon in malabsorption. Scand J Gastroenterol 13(Suppl 49):16, 1978.Google Scholar
  36. 36.
    Erspamer V, Melchiorri P: Active polypeptides of the amphibian skin and their synthetic analogues. Pure Appl Chem 35:463, 1973.CrossRefGoogle Scholar
  37. 37.
    Bloom SR, Ghatei MA, Christofides ND, et al: Release of neurotensin, enteroglucagon, motilin and pancreatic polypetide by bombesin in man. Gut 20(10):A912, 1979.Google Scholar
  38. 38.
    Konturek SJ: Endogenous opiates and the digestive system. Scand J Gastroenterol 13:257, 1978.PubMedCrossRefGoogle Scholar
  39. 39.
    North RA, Williams JT: Enkephalin inhibits firing of myenteric neurons. Nature (London) 264: 461, 1976.CrossRefGoogle Scholar
  40. 40.
    Cocks T, Burnstock G: Effects of neuronal polypeptides on intestinal smooth muscle: A comparison with non-adrenergic, non-cholinergic nerve stimulation and ATP. Eur J Pharmacol 54:251, 1979.PubMedCrossRefGoogle Scholar
  41. 41.
    Dockray, GJ: Immunoreactive component resembling cholecystokinin octapeptide in intestine, Nature 270:359–361, 1977.PubMedCrossRefGoogle Scholar
  42. 42.
    Rehfeld, JF, Larsson LI: The predominant form of antral gastrin and intestinal cholecystokinin corresponds to the common C-terminal tetrapeptide, in Rehfeld JF, Amdrup E: (eds): Gastrins and the Vagus London and New York, Academic Press, pp. 85–94.Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • Julia M. Polak
    • 1
  • Anne E. Bishop
    • 1
  • S. R. Bloom
    • 1
  1. 1.Department of Histochemistry and Medicine, Royal Postgraduate Medical SchoolHammersmith HospitalLondonEngland

Personalised recommendations