In order to develop marine biomass as a source of raw materials, a large dependable and economical supply of suitable biomass must be developed; however, our ability to develop such a supply is largely unproven. Although terrestrial biomass has received considerable attention, the development of terrestrial biomass crops has been hampered by competition with food crops, other uses of land and water, and the cost of supplying nutrients.


Brown Alga Marine Alga Marine Plant Giant Kelp Energy Conversion Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. H. Ryther, Cultivation of macroscopic marine algae and fresh water aquatic weeds, Progress Report 1 (May 1976–December 1976), under Contract EY-76-02-2948 to U.S. Department of Energy (1978)Google Scholar
  2. 2.
    M. R. Hart, D. de Fremery, G. K. Lyon, D. D. Duzmicky, and G. O. Kohler, Ocean Food and Energy Farm Kelp Pretreatment and Separation Processes, Western Regional Research Center, Agricultural Research Service, USDA, (1976).Google Scholar
  3. 3.
    I. T. Show, L. E. Piper, S. E. Lupton, and G. R. Stegen, A Comparative Assessment of Marine Biomass Materials, Electric Power Research Institute, AF-1169 (1979).Google Scholar
  4. 4.
    J. M. Radovich, P. G. Risser, T. G. Shannon, C. F. Pomeroy, S. S. Sofer, and C. M. Sliepcevich, Evaluation of the Potential for Producing Liquid Fuels from Biomaterials, EPRI AF-974, TPS77-716 Final Report, Palo Alto, California (1979).Google Scholar
  5. 5.
    E. Steeman-Nielsen, J. Cons. Int. Explor. Mer. 19, 309–328 (1954).Google Scholar
  6. 6.
    O. J. Koblentz-Mishke, V. V. Volkovinsky, and J. G. Kabanova, in: Scientific Exploration of the South Pacific (W. S. Wooster, ed.), pp. 183–193, National Academy of Sciences Translations, Washington, D.C. (1970).Google Scholar
  7. 7.
    J. H. Ryther, in: The Sea, Vol. 2, (M. N. Hill, ed.), Wiley Interscience, New York (1963), pp. 347–380.Google Scholar
  8. 8.
    A. P. Vinogradov, Memoir No. 11, Sears Foundation for Marine Research, New Haven, Conn. (1953).Google Scholar
  9. 9.
    R. T. Paine and R. L. Vadas, Mar. Biol 4, 79–96 (1969).CrossRefGoogle Scholar
  10. 10.
    V. I. Chapman, Seaweeds and Their Uses, 2nd edition, Methuen, London (1970).Google Scholar
  11. 11.
    E. Y. Dawson, Marine Botany: An Introduction, Holt, Reinhart, and Winston, New York (1966).Google Scholar
  12. 12.
    D. R. Hoagland, J. Agric. Res. 4, 39–51 (1915).Google Scholar
  13. 13.
    H. G. Mautner, Econ. Bot. 8, 174–192 (1954).CrossRefGoogle Scholar
  14. 14.
    T. Platt and B. Irwin, Limno. Oceanogr. 18, 306–310 (1973).CrossRefGoogle Scholar
  15. 15.
    E. J. Lewis, Proceedings of Seminar on Sea, Salt, and Plants, Bavnager, India (1967), pp. 296–308.Google Scholar
  16. 16.
    N. B. Allen, Proceedings of Seminar on Sea, Salt, and Plants, Bavnager, India (1967), pp. 336–368.Google Scholar
  17. 17.
    S. S. Rossi, G. W. Rommel, and A. A. Benson, Phytochemistry 17, 1431–1432, (1978).CrossRefGoogle Scholar
  18. 18.
    J. R. Payne, B. de Lappe, and R. Risebrough, in: Southern California Baseline Study, Intertidal, Year II, Vol. III, Report 23, BLM/Science Applications, Inc. (1978).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Ivan T. ShowJr.
    • 1
  1. 1.Science Applications, Inc.LaJollaUSA

Personalised recommendations