The possibility of using plant biomass as a fuel has been discussed for some time.(1−4) As discussed by Risser, it has been estimated that agricultural and forestry wastes could contribute as much as 2% of the country’s current annual fossil energy use. In 1957, Tamiyo discussed the possibilities of using mass algal cultures as an energy supply and concluded that the future was very encouraging for these large-scale systems.(5) However, the following discussion will show that more recent authors have presented far less optimistic predictions.


Salt Marsh Standing Crop Aquatic Macrophyte Water Hyacinth Mass Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Calvin, Photosynthesis as a resource for energy and materials, Am. Sci. 64, 270–278 (1976).Google Scholar
  2. 2.
    A. Mitsui, S. Miyachi, A. San Pietro, and S. Tamura (eds.), Biological Solar Energy Conversion, Academic Press, New York (1977).Google Scholar
  3. 3.
    J. A. Bassham, Photosynthesis: The path of carbon, in: Plant Biochemistry (J. Bonner and J. E. Varner, eds.), Academic Press, New York, NY (1965), pp. 875–902.Google Scholar
  4. 4.
    J. C. Goldman, Outdoor algal mass cultures, I: Applications, Water Res. 13, 1–20 (1979).CrossRefGoogle Scholar
  5. 5.
    H. Tamiyo, The mass culture of algae, Ann. Rev. Plant Physiol. 8, 309–334 (1957).CrossRefGoogle Scholar
  6. 6.
    M. S. Doty, Status of marine agronomy, with special reference to the tropics, in: Proceedings of the Ninth International Seaweed Symposium, (A. Jensen and J. Stein, eds.) Science Press, Princeton NJ (1978), pp. 35–38.Google Scholar
  7. 7.
    G. A. Jackson, Nutrients and production of giant kelp, Macrocystis pyrifera, off southern California, Limnol. Oceanogr. 22, 979–995 (1977).Google Scholar
  8. 8.
    M. R. Hart, D. deFremery, C. K. Lyon and G. O. Kohler, Processing of Macrocystis pyrifera (Phaeophyceae), for fermentation to methane, in: Proceedings of the Ninth International Seaweed Symposium, (A. Jensen and J. Stein, eds.), Science Press, Princeton, NJ (1978), pp. 493–498.Google Scholar
  9. 9.
    C. W. Schneider, and R. B. Searles, Standing crop of benthic seaweeds on the Carolina continental shelf, in: Proceedings of the Ninth International Seaweed Symposium, (A. Jensen and J. Stein, eds.), Science Press, Princeton, NJ (1978), pp. 293–301.Google Scholar
  10. 10.
    R. W. Eppley, E. H. Renger and W. G. Harrison, Nitrate and phytoplankton production in southern California coastal waters, Limnol. Oceanogr. 24, 483–494 (1979).CrossRefGoogle Scholar
  11. 11.
    D. L. Correll, Estuarine productivity, Bio Science 28, 646–650 (1978).Google Scholar
  12. 12.
    A. A. de la Cruz, The role of tidal marshes in the productivity of coastal waters, Assoc. Southeast Biol. Bull. 20, 147–156 (1973).Google Scholar
  13. 13.
    B. G. Hatcher and K. H. Mann, Aboveground production of marsh cordgrass (Spartina alterniflora) near the northern end of its range, J. Fish. Res. Bd. Can. 32, 83–87 (1975).CrossRefGoogle Scholar
  14. 14.
    C. S. Hopkinson, J. G. Gosselink, and R. T. Parrondo, Aboveground production of seven marsh plant species in coastal Louisiana, Ecology 59, 760–769 (1978).CrossRefGoogle Scholar
  15. 15.
    D. A. White, T. E. Weiss, J. M. Trapani, and L. B. Their, Productivity and decomposition of the dominant salt marsh plants in Louisiana, Ecology 59, 751–759 (1978).CrossRefGoogle Scholar
  16. 16.
    D. F. Westlake Comparisons of plant productivity, Biol. Rev. 38, 385–425 (1963).CrossRefGoogle Scholar
  17. 17.
    C. R. Goldman (ed.), Primary Productivity in Aquatic Environments (proceedings of an International Biological Programme Fresh Water Production symposium, Pallanza, Italy, April 26–May 1, 1965), University of California Press, Berkeley, CA (1966).Google Scholar
  18. 18.
    A. N. D. Auclair, A. Bouchard, and J. Pajaezkowski, Plant standing crop and productivity relations in a Scirpus-Equisetum wetland, Ecology 57, 941–952 (1976).CrossRefGoogle Scholar
  19. 19.
    W. T. Penfound, Primary production of vascular aquatic plants, Limnol. Oceanogr. 1, 92–101 (1956).CrossRefGoogle Scholar
  20. 20.
    M. Brylinsky and K. M. Mann, An analysis of factors governing productivity in lakes and reservoirs, Limnol. Oceanogr. 18, 1–14 (1973).CrossRefGoogle Scholar
  21. 21.
    J. R. Beneman, Biofuels: A survey, ER-746-SR Electric Power Research Institute, Palo Alto, CA (1978).Google Scholar
  22. 22.
    C. G. Golueke and W. J. Oswald, Power from solar energy via algae-produced methane, Solar Energy 7, 86–92 (1963).CrossRefGoogle Scholar
  23. 23.
    E. Ashare, D. C. Augenstein, A. C. Sharon, R. L. Wentworth, E. H. Wilson, and D. L. Wise, Cost analysis of algae biomass systems, Report No. 1738, Dynatech R/D Co., Cambridge, MA. (1978).Google Scholar
  24. 24.
    J. D. Goldman and J. H. Ryther, Mass production of algae: Bioengineering aspects, in: Biological Solar Energy Conversion (A. Mitsui, S. Miyachi, A. San Pietro and S. Tamura, eds.), Academic Press, New York (1977), pp. 367–378.Google Scholar
  25. 25.
    W. J. Bond and M. G. Roberts, The colonization of Cabora Bassa, Mozambique, a manmade lake, by floating aquatic macrophytes, Hydrobiologia 60, 243–260 (1978).CrossRefGoogle Scholar
  26. 26.
    E. Hesser and O. Gangstad, Nuisance aquatic macrophyte growth, J. Aquat. Plant Manage. 16, 11–13 (1978).Google Scholar
  27. 27.
    National Academy of Sciences, Making aquatic weeds useful: Some perspectives for developing countries, NAS, Washington, D.C. (1976).Google Scholar
  28. 28.
    J. D. McCullough, A study of phytoplankton primary productivity and nutrient concentrations in Livingston Reservoir, Texas J. Sci. 30, 377–388 (1978).Google Scholar
  29. 29.
    J. M. Klopatek and F. W. Stearns, Primary productivity of emergent macrophytes in a Wisconsin freshwater marsh ecosystem, Am. Midl. Nat. 100, 320–332 (1978).CrossRefGoogle Scholar
  30. 30.
    J. G. Gosselink and R. E. Turner, The role of hydrology in freshwater wetland ecosystems, in: Freshwater Wetlands: Ecological Processes and Management Potential (R. E. Good, D. F. Whigham, and R. L. Simpson, eds.), pp. 63–78, Academic Press, New York (1978).Google Scholar
  31. 31.
    A. A. de la Cruz, Primary production processes: Summary and Recommendations, in: Freshwater Wetlands: Ecological Processes and Management Potential (R. E. Good, D. F. Whigham, and R. L. Simpson, eds.), pp. 79–86, Academic Press, New York.Google Scholar
  32. 32.
    M. S. Adams, P. Guilizzoni, and S. Adams, Relationship of dissolved inorganic carbon to macrophyte photosynthesis in some Italian lakes, Limnol. Oceanogr. 23, 912–919 (1978).CrossRefGoogle Scholar
  33. 33.
    M. Owens and R. W. Edwards, The effects of plants on river conditions, III: Crop studies and estimates of net productivities of macrophytes in four streams in southern England, J. Ecol. 50, 157–162 (1962).CrossRefGoogle Scholar
  34. 34.
    C. E. Boyd, Amino acid, protein, and caloric content of vascular aquatic macrophytes, Ecology 51, 902–906 (1970).CrossRefGoogle Scholar
  35. 35.
    J. M. McClure, The secondary constituents of aquatic angiosperms, in: Phytochemical Phytogeny (J. B. Harborne, ed.), Academic Press, New York (1970), pp. 233–268.Google Scholar
  36. 36.
    W. J. Nelson and L. S. Palmer, Nutritive value and general chemical composition of Elodea, Myriophyllum, Vallisineria and other aquatic plants, Minn. Agric. Expt. Sta. Tech. Bull. 136, 1–47 (1938).Google Scholar
  37. 37.
    A. N. D. Auclair, Factors affecting tissue nutrient concentrations in a Scirpus-Equisetum wetland, Ecology 60, 337–348 (1979).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Paul G. Risser
    • 1
  1. 1.Illinois Natural History SurveyChampaignUSA

Personalised recommendations