Design of Small-Scale Biogas Plants

  • Michael R. Brulé


Energy shortages and pollution problems have continued to accelerate interest in biogas plants for industry and agriculture. Recently, several commercial large-scale anaerobic-digestion facilities have come on stream in the wake of dwindling natural gas supplies. Small-scale units are also being implemented to supplement energy requirements for dairies and farms. The current status of these methane-from-cow-manure or “moothane” plants is reviewed herein. The intent is to acquaint those interested in, but not intimately familiar with this field, with current work in biogasification systems. Particular emphasis is on small-scale units; design criteria and economic considerations are discussed for an actual working unit.


Heat Exchanger Anaerobic Digestion Methane Production Dairy Farm Agricultural Waste 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. l.
    C. R. Engler, L. T. Fan, L. E. Erickson, and W. P. Walawender, Feedlot manure and other agricu’ture wastes as future material and energy resources, No. 45: Process Descriptions, Kansas State Univ., Manhattan, Kansas (1973).Google Scholar
  2. 2.
    Chementator, Chemical Engineering, (October 28, 1974).Google Scholar
  3. 3.
    Chementator, Chemical Engineering, (September 1, 1975).Google Scholar
  4. 4.
    E. Ashare, D. L. Wise, and R. L. Wentworth, Fuel Gas Production from Animal Residue, Dynatech Engineering Report No. 1551, Dynatech R/D Company, 99 Erie St., Cambridge, Massachusetts (January 14, 1977).Google Scholar
  5. 5.
    S. M. Barnett and D. J. Romano, Food, Fuel, and Fertilizers from Manure, Paper delivered at American Institute of Chemical Engineers National Meeting, Houston, Tx. (1975).Google Scholar
  6. 6.
    J. O. Burford, and F. T. Varani, Energy Potential through Bioconversion of Agricultural Wastes, final report to Four Corner Regional Commission, Grant FCRC 651-366-075 (1976).Google Scholar
  7. 7.
    W. J. Jewell, F. R. Morris, D. R. Price, W. W. Gunkel, D. W. Williams and R. C. Loehr, Methane Generation from Agricultural Wastes: Review of Concept and Future Applications, Cornell University, Ithaca, New York (1974).Google Scholar
  8. 8.
    P. L. McCarty, Anaerobic waste treatment fundamentals: I, Chemistry and microbiology; II, Environmental requirements and control; III, Toxic materials and their control; IV, Process design, Public Works 95, 107–112 (September 1964), 123-126 (October 1964), 91-94 (November 1964), and 95-99 (December 1964).Google Scholar
  9. 9.
    P. L. McCarty, Thermodynamics of biological synthesis and growth, Int. J. Air Water Pollut. 9, 621 (1965).Google Scholar
  10. 10.
    A. W. Lawrence and P. L. McCarty, Kinetics of methane fermentation in anaerobic treatment, J. Water Pollut. Control Fed. 41 (2), (1969).Google Scholar
  11. 11.
    J. Monod, The Growth of Bacterial Cultures, Annu. Rev. Microbiol. 3, 371 (1949).CrossRefGoogle Scholar
  12. 12.
    H. A. Barker, Bacterial Fermentation, John Wiley and Sons, Inc., New York (1956).Google Scholar
  13. 13.
    C. G. Golueke, W. J. Oswald, and H. B. Gotaas, Appl. Microbiol. 5, 47 (1957).Google Scholar
  14. 14.
    H. J. Pelczar, Jr. and R. D. Reid, Microbiology, 2nd Edition, McGraw-Hill Book Company, New York (1965).Google Scholar
  15. 15.
    A. M. Buswell and H. F. Mueller, Mechanisms of methane fermentation, Ind. Eng. Chem. 44, 550–552Google Scholar
  16. 16.
    J. F. Andrews and S. P. Graefe, Adv. in Chem. 105, Anaerobic Biological Treatment Processes, American Chemical Soc. (1976) p. 126.CrossRefGoogle Scholar
  17. 17.
    J. S. Jeris, and P. L. McCarty, The biochemistry of methane fermentation using C14 tracers, in: Proceedings of the Seventeenth Industrial Waste Conference, Purdue University, West Lafayette, Indiana (1963).Google Scholar
  18. 18.
    W. A. Pretorius, The effect of acetate utilizing methanogenic bacteria, Water Res. 6, 1213–1217 (1972).CrossRefGoogle Scholar
  19. 19.
    W. A. Pretorius, Principles of anaerobic digestion, in: Water Pollut. Contr. pp. 202–204 (1973).Google Scholar
  20. 20.
    P. G. Thiel, D. F. Tarieu, W. H. J. Hattingh, J. P. Kotzé, and M. L. Siebert, Interrelations between biological and chemical characteristics in anaerobic digestion, Water Res. 2, 393–408 (1968).CrossRefGoogle Scholar
  21. 21.
    E. S. Kirsch and R. M. Sykes, Anaerobic digestion in biological waste treatment, Progr. Ind. Microbiol. 9, 155–236 (1971).Google Scholar
  22. 22.
    J. T. O’Rourke, Kinetics of anaerobic treatment at reduced temperatures, Doctoral dissertation, Stanford University, Stanford, California (1968).Google Scholar
  23. 23.
    A. E. Humphrey, S. Aiba, N. F. Millis, Biochemical Engineering, Academic Press, New York (1973).Google Scholar
  24. 24.
    A. E. Humphrey, Current developments in fermentation, Chem. Eng. (December 9, 1974).Google Scholar
  25. 25.
    B. Atkinson, Biochemical Reactors, Pion Ltd., London (1974).Google Scholar
  26. 26.
    J. L. Gaddy, E. L. Park, and E. B. Rapp, Kinetics and economics of anaerobic digestion of animal waste, Water, Air, Soil Pollut. No. 3. (1974).Google Scholar
  27. 27.
    S. Ghosh and F. G. Pohland, Kinetics of substrate assimilation and product formation in anaerobic digestion, J. Water Pollut. Control Fed. 46 (4) (1974).Google Scholar
  28. 28.
    S. Ghosh, J. R. Conrad, and D. L. Klass, J. Water Pollut. Control Fed. 47, 30 (1975).Google Scholar
  29. 29.
    A. W. Lawrence, Application of process kinetics to design of anaerobic processes, in: Advances in Chemistry Series 105 (F. G. Pohland, ed.), American Chemical Society, (1971).Google Scholar
  30. 30.
    A. M. Buswell, Industrial Fermentations 2, Chemical Publishing Co., New York (1949). p. 518.Google Scholar
  31. 31.
    M. P. Bryant, S. F. Tzeng, I. M. Robinson, and A. E. Joiner, Nutrient requirements of methanogenic bacteria, in: Advances in Chemistry, Series 105: Anaerobic Biological Treatment Processes, American Chemical Society (1971).Google Scholar
  32. 32.
    K. Imhoffand G. H. Fair, Sewage Treatment, John Wiley and Sons, Inc., New York (1940).Google Scholar
  33. 33.
    A. W. Lawrence, Anaerobic biological waste treatment systems, in: Agricultural Wastes: Principles and Guidelines for Practical Solutions, Proceedings, Conference of Agricultural Waste Management, Cornell University, Ithaca, New York (1971).Google Scholar
  34. 34.
    L. G. Rich, Environmental Systems Engineering, McGraw-Hill, New York (1973).Google Scholar
  35. 35.
    J. Maly and H. Fadrus, Influence of temperature on anaerobic digestion, J. Water Pollut. Control Fed. 43, 4(1971).Google Scholar
  36. 36.
    H. R. Zablatsky and S. A. Peterson, Anaerobic digestion failure, J. Water Pollut. Control Fed. (40), (1968).Google Scholar
  37. 37.
    E. Rubins and F. Bear, Carbon-nitrogen ratios in organic fertilizer materials in relation to the availability of their nitrogen, Soil Sci. 54, 411–423 (1942).CrossRefGoogle Scholar
  38. 38.
    F. A. Sanders and D. Bloodgood, The effect of nitrogen to carbon ratio on anaerobic decomposition, J. Water Pollut. Control Fed. 37, 1741 (1965).Google Scholar
  39. 39.
    C. N. Sawyer, Anaerobic units, in: Proceedings, Symposium on Advances in Sewage Treatment Design, New York (1961).Google Scholar
  40. 40.
    J. C. Converse and R. E. Graves, Facts on Methane Production from Animal Manure, University of Wisconsin, Madison, Wisconsin (1974).Google Scholar
  41. 41.
    I. J. Kugelman and P. L. McCarty, Cation toxicity and stimulation anaerobic waste treatment, J. Water Pollut. Control Fed. (37), (1965).Google Scholar
  42. 42.
    L. J. Ricci, Garbage routes to methane, Chem. Eng. (May 27, 1974).Google Scholar
  43. 43.
    L. J. Ricci, Scavenging of wastes promises a gas bonus, Chem Eng. (November 10, 1975). 10, 1975).Google Scholar
  44. 44.
    T. H. Maugh II, Fuel from wastes: A minor energy source, Science, 178, 599–602 (1972).CrossRefGoogle Scholar
  45. 45.
    T. M. McCalla, Think of manure as a resource, not a waste, Feedlot Manage. 14, 10, 11, 68 (1972).Google Scholar
  46. 46.
    J. Jones, Converting solid wastes and residues to fuel, Chem. Eng. 87-94 (January 2, 1978).Google Scholar
  47. 47.
    J. L. Jones, Overview of solid waste and residue generation, disposition, and conversion technologies, presented at a symposium on Advanced Thermal Processes for Conversion of Solid Wastes and Residues, American Chemical Society, Anaheim, California (March 15–16, 1977).Google Scholar
  48. 48.
    J. C. Kuester and L. Lutes, Fuel and feedstock from refuse, Environ. Sci. Technol. 10, 339–341 (1976).CrossRefGoogle Scholar
  49. 49.
    P. M. Kohn, Biomass: A growing energy source, Chem. Eng. 58-62 (January 30, 1978).Google Scholar
  50. 50.
    L. L. Anderson, U.S. Bur. Mines Inf. Circ. No. 8549 (1972).Google Scholar
  51. 51.
    Energy Alternatives: A Comparative Analysis, University of Oklahoma Science and Public Policy Program, Norman, Oklahoma (May, 1975).Google Scholar
  52. 52.
    Federal Register, Effluent guidelines and standards, Environ. Prot. Agency (U.S.) Publ. 39(32), Parts 1, 2, and 3 (1974).Google Scholar
  53. 53.
    T. L. Willrich and G. E. Smith, Agricultural Practices and Water Quality, Iowa State University Press, Iowa (1970).Google Scholar
  54. 54.
    W. J. Jewell, Anaerobic fermentation of agricultural wastes—Potential for improvement and implementation, Cornell University, Ithaca, New York (1976).Google Scholar
  55. 55.
    W. J. Jewell, H. R. Davis, W. W. Gunkel, D. J. Lathwell, J. H. Martin, T. R. McCarthy, G. R. Morris, D. R. Price, and D. W. Williams, Bioconversion of Agricultural Wastes for Pollution Control and Energy Conservation, New York State College, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York (1976).Google Scholar
  56. 56.
    P. L. Silveston, Methane Production from Manure in Small Scale Units, University of Waterloo, Ontario, Canada (1975).Google Scholar
  57. 57.
    P. L. Silveston, Professor of Chemical Engineering, University of Waterloo, Canada, personal communication with M. R. Brule (May 8, 1975).Google Scholar
  58. 58.
    W. W. Gunkel, W. J. Jewell, T. R. McCarty, D. R. Price, and D. W. Williams, Analysis of Energy Utilization on Beef Feedlots and Dairy Farms, Cornell University, Ithaca, New York (1975).Google Scholar
  59. 59.
    Herbert Kuhlman, owner of the site where the biogasification system has been installed, personal communication (1975).Google Scholar
  60. 60.
    G. L. Casier, W. W. Gunkel, and D. R. Price, Accounting of Energy Inputs for Agricultural Production in New York State, Cornell University, Ithaca, New York (1975).Google Scholar
  61. 61.
    G. R. Morris, W. J. Jewell, and G. L. Casier, Alternative Animal Wastes; Anaerobic Fermentation Designs and Their Costs, Cornell University, Ithaca, New York (1974).Google Scholar
  62. 62.
    R. J. Smith, The Anaerobic Digestion of Livestock Wastes and the Prospects for Methane Production, Iowa State University (November, 1973).Google Scholar
  63. 63.
    N. W. Snyder, Energy recovery and resources recycling, in: Chemical Engineering/Deskbook Issue McGraw-Hill, New York (October 21, 1974).Google Scholar
  64. 64.
    James C. Converse, Professor of Agricultural Engineering, University of Wisconsin, Madison, Wisconsin, personal interview with M. R. Brule (1975).Google Scholar
  65. 65.
    E. F. Schumacher, Small is Beautiful—Economics as if People Mattered, Harper & Row, New York (1973).Google Scholar
  66. 66.
    Proceedings of Conference on Capturing the Sun Through Bioconversion, Washington Center for Metropolitan Studies, Washington, D.C. (1976).Google Scholar
  67. 67.
    H. W. Parker, D. M. Wells, and G. A. Whetstone, Study of Current and Proposed Practices in Animal Waste Management, Environ. Prot. Agency U.S. Publ., Report No. 43019-74-003, Washington, D.C. (1974).Google Scholar
  68. 68.
    L. M. Auerbach, A Homesite Power Unit: Methane Generator, Alternative Energy Concepts Co., 242 Copse Rd., Madison, Connecticut (1974).Google Scholar
  69. 69.
    L. J. Fry, Practical Building of Methane Power Plants for Rural Energy Independence, available from L. J. Fry, 1223 North Nopal Street, Santa Barbara, California (1974).Google Scholar
  70. 70.
    L. J. Fry and R. Merrill, Methane Digesters for Fuel Gas and Fertilizer with Instructions for Two Working Models, New Alchemy Institute, Woods Hole, Massachusetts (1973).Google Scholar
  71. 71.
    R. B. Singh, The biogas plant, generating methane from organic wastes, Compost Sci. 13, 20-25 (1972).Google Scholar
  72. 72.
    R. B. Singh, Bio-Gas Plant—Designs and Specifications, Mother’s Print Shop, P.O. Box 70, Hendersonville, North Carolina 28739 (1975).Google Scholar
  73. 73.
    R. B. Singh, Some Experiments with Biogas, Gobar Gas Research Station, Ajitmal, Etawah (U.P.) India. (1971).Google Scholar
  74. 74.
    T. P. Abeles, and P. Atkinson, Economics and Energy Considerations for Anaerobic Digestion of Farm Waste, College of Environmental Sciences, University of Wisconsin, Green Bay, Wisconsin (1975).Google Scholar
  75. 75.
    J. A. Alich, Economic Assessment on Energy from Agricultural Residues, A Case Study, Stanford Research Institute (SRI) Report (1977).Google Scholar
  76. 76.
    S. Donatiello, S. Graefe, L. Viamontes, J. Wright, and T. Yademec, Cow Power (Production of Methane from Manure), Washington University, St. Louis, Missouri (1973).Google Scholar
  77. 77.
    R. H. Shipman, D. P. Palmer, W. P. Walawender, L. T. Fan, Final project report on the production of energy for Decatur County dairy, Oberlin, Kansas, by the anaerobic digestion of livestock manures, Department of Chemical Engineering, Kansas State University, Manhattan, Kansas (December 31, 1975).Google Scholar
  78. 78.
    R. D. Wingo, Feedlot Waste and Methane Production from Oklahoma Dirt-Type Feedlots, Master’s thesis, University of Oklahoma Norman, Oklahoma (1974).Google Scholar
  79. 79.
    T. H. Crane, Energy and resource recovery from manures and agricultural wastes, Resource Recovery Systems, Barker Colman Co., Irvine, California (1975).Google Scholar
  80. 80.
    C. N. Ifeadi and J. B. Brown, Jr., An assessment of technologies suitable for the recovery of energy from agricultural wastes, Waste Control and Process Technology Section, Battelle, Columbus, Ohio (1975).Google Scholar
  81. 81.
    L. C. Gramms, L. B. Pokowski, and S. A. Witzel, Anaerobic digestion of farm animal wastes, Transactions of the American Society of Agricultural Engineers, (July 11, 1971) p. 14.Google Scholar
  82. 82.
    R. E. Inman and J. A. Alich, Jr., Availability of agricultural residues as energy feedstocks, Stanford Research Institute, Menlo Park, California (1975).Google Scholar
  83. 83.
    D. L. Klass, Make SNG from waste and biomass, Hydrocarbon Processing 55 (4) 76-82 (April, 1976).Google Scholar
  84. 84.
    Production of Power Fuel by Anaerobic Digestion of Feedlot Waste, Hamilton Standard Division of the United Aircraft Corporation prepared for the USDA, Peoria, Illinois (1974).Google Scholar
  85. 85.
    C. C. Holloway, Use of Ruminant Animals in Refuse Disposal, Doctoral dissertation, University of Oklahoma Norman, Oklahoma (1975).Google Scholar
  86. 86.
    M. R. Brulé and S. S. Sofer, Small-scale biogas processing facilities, Proceedings, The Gas Conditioning Conference 28: Bl-21 (1978).Google Scholar
  87. 87.
    M. R. Brulé and S. S. Sofer, A biogasification system at a dairy, Proc. Okla. Acad. Sci. 56, 18–23 (1976).Google Scholar
  88. 88.
    M. R. Brulé, Process Design of an Anaerobic Digestion Facility, M.S. Thesis, Chemical Engineering and Materials Science, University of Oklahoma Norman, Oklahoma (1975).Google Scholar
  89. 89.
    O. H. Linguist, Environmental Protection Agency, Public Affairs Division, private communication with M. R. Brulé (April 14, 1975).Google Scholar
  90. 90.
    H. Eby, Design criterion for manure lagoons, American Society of Agricultural Engineers (ASAE) Paper 61-935 (1969).Google Scholar
  91. 91.
    C. F. Pomeroy, A study of the engineering economics of a biogasification system on a dairy farm, Chemical Engineering and Materials Science (unpublished manuscript), University of Oklahoma, Norman, Oklahoma (December 2, 1975).Google Scholar
  92. 92.
    E. D. Devero, representative of Oklahoma Natural Gas Company, private communication with M. R. Brulé (August 22, 1975).Google Scholar
  93. 93.
    U.S. Environmental Protection Agency, Sludge treatment and disposal, U.S. Government Printing Office, Washington, D.C. (October, 1974).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Michael R. Brulé
    • 1
  1. 1.School of Chemical Engineering and Materials ScienceUniversity of OklahomaNorman, OklahomaUSA

Personalised recommendations