α-1-Antichymotrypsin, a Serine Protease Inhibitor, is a Component of the Amyloid Deposits in Alzheimer’s Disease

  • Carmela R. Abraham
  • Dennis J. Selkoe
  • Huntington Potter


Alzheimer’s disease brains are characterized by three neuropathological lesions: neuritic plaques, neurofibrillary tangles, and vascular amyloid deposits. Neuritic plaques are spherical in shape and consist of a core of extracellular amyloid filaments surrounded by a halo of degenerating nerve cell processes. The neurites frequently contain a class of abnormal protein fibers termed paired helical filaments. These are composed of two helically-wound, ~10 nm filaments, that are immunologically related to the cytoskeletal proteins of the neuron (for review, see Selkoe, 1986). The same paired helical filaments can also be found in large aggregates, called neurofibriliary tangles, in the cell bodies of certain neurons. The third type of proteinaceous deposit in Alzheimer’s disease brain consists of amyloid filaments similar to those in the cores of neuritic plaques, and occurs in the walls of meningeal and intracortical blood vessels.


Down Syndrome Amyloid Deposit Serine Protease Inhibitor Neuritic Plaque Amyloid Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chandra, T., Stackhouse, R., Kidd, V.J. and Woo, S.L.C. (1983a). Isolation and sequence characterization of a c-DNA clone of a human antithrombin III. Proc. Natl. Acad. Sci. USA 80:1845–1848.CrossRefGoogle Scholar
  2. Chandra, T., Stackhouse, R., Kidd, V.J., Robson, K.J.H. and Woo, S.L.C. (1983b). Sequence hornology between human α-1-antichymotrypsin, α-1-antitrypsin, and antithrombin III. Biochemistry 22:5055–5061.CrossRefGoogle Scholar
  3. Glenner, G.G. (1983). Alzheimer’s Disease: multiple cerebral amyloidosis. Banbury Rep. 15:137–144.Google Scholar
  4. Glenner, G.G. and Wong, C.G. (1984). Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120:885–890.CrossRefGoogle Scholar
  5. Goldgaber, D., Lerman, M.I., McBride, O.W., Saffiotti, U. and Gajdusek, D.C. (1987). Characterization and chromosomal localization of a c-DNA encoding brain amyloid of Alzheimer’s Disease. Science 235:877–880.CrossRefGoogle Scholar
  6. Jarvik, L.F. and Matsuyama, S.S. (1986). Dementia of the Alzheimer type: genetic aspects. In: The Biological Substrates of Alzheimer’s Disease, Scheibel, A.B. and Wechslev, A.F., eds. Academic Press, Orlando, pp. 17–20.Google Scholar
  7. Kalderon, N. (1984). Schwann cell proliferation and localized proteolysis: Expression of plasminogen-activator activity predominates in the proliferating cell populations. Proc. Natl. Acad. Sci. USA 81:7216–7220.CrossRefGoogle Scholar
  8. Kang, J., Lemaire, H.-G., Unterbeck, A., Salbaum, J.M., Masters, C.L., Grzeschik, K.-H., Multhaup, G., Beyreuther, K. and Muller-Hill, B. (1987). The precursor of Alzheimer’s Disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–736.CrossRefGoogle Scholar
  9. Masters, C.L., Simms, G., Weinman, N.A., Multhaup, G., McDonald, B.L. and Beyreuther, K. (1985). Amyloid plaque core protein in Alzheimer Disease and Down Syndrome. Proc. Natl. Acad. Sci. USA 82:4245–4249.CrossRefGoogle Scholar
  10. Miyakawa, T., Shimoji, A., Kuramoto, R. and Higuchi, Y. (1982). The relationship between senile plaques and cerebral blood vessels in Alzheimer’s Disease and senile dementia. Virchows Arch. B 40:121–129.CrossRefGoogle Scholar
  11. Monard, D., Niday, E., Limat, A. and Solomon, F. (1983). Inhibition of protease activity can lead to neurite extension in neuroblastoma cells. Prog. Brain Res. 58:359–364.CrossRefGoogle Scholar
  12. Papadimitriou, C.S., Stein, H. and Papacharalampous, N.X. (1980). Presence of α-l-antichymotrypsin and α-antitrypsin in haematopoietic and lymphoid tissue cells as revealed by the immunoperoxidase method. Path. Res. Pract. 169:287–297.CrossRefGoogle Scholar
  13. Pittman, R.N. (1984). Neuron-target cell interactions may involve protease-inhibitor interactions. Soc. Neurosci. 10:194.5.Google Scholar
  14. Pittman, R.N. (1985). Release of plasminogen activator and a calcium-dependent met-alloprotease from culture sympathetic and sensory neurons. Devel. Biol. 110:91–101.CrossRefGoogle Scholar
  15. Pittman, R.N. and Patterson, P.H. (1987). Characterization of an inhibitro of neuronal plasminogen activator released by heart cells. J. Neurosci. (in press).Google Scholar
  16. Rabin, M., Watson, M., Kidd, V., Woo, S.L.C., Breg, W.R. and Ruddle, F.H. (1986). Regional location of α-1-antichymotrypsin and a-1-antitrypsin genes on human chromosome 14. Somatic Cell. Mol. Genet. 12:209–214.CrossRefGoogle Scholar
  17. Robakis, N.D., Wisniewski, H.M., Jenkins, E.C., Devine-Gage, E.A., Houck, G.E., Yao, X.-L., Ramakrishna, N., Wolfe, G., Silverman, W.P. and Brown, W.T. (1987). Chromosome 21q21 sublocalisation of gene encoding β-amyloid peptide in cerebral vessels and neuritic (senile) plaques of people with Alzheimer Disease and Down Syndrome. Lancet 8529: 384–385.CrossRefGoogle Scholar
  18. St. George-Hyslop, P.H., Tanzi, R.E., Polinsky, R.J., Haines, J.L., Nee, L., Watkins, P.C., Myers, R., Feldman, R., Pollen, D., Drachman, D., Growdon, J., Bruni, A., Foncin, J.-F., Frommelt, P., Amaducci, L., Sorbi, S., Piacentini, S., Stewart, G.D., Hobbs, W.J., Conneally, P.M. and Gusella, J.F. (1987). The genetic defect causing familial Alzheimer’s Disease maps on chromosome 21. Science 235:885–889.CrossRefGoogle Scholar
  19. Selkoe, D.J. (1986). Altered structural proteins in plaques and tangles: what do they tell us about the biology of Alzheimer’s disease? Neurobiol. Aging 7: 425–432.CrossRefGoogle Scholar
  20. Selkoe, D.J. and Abraham, C.R. (1986). Isolation of paired helical filaments and senile plaque amyloid fibers in Alzheimer’s Disease. In: Methods in Enzymology, 134, ed. R. Vallee, Academic Press, Orlando, Florida (in press).Google Scholar
  21. Selkoe, D.J., Bell, D.S., Podlisny, M.B., Price, D.L. and Cork, L.C. (1987a). Conservation of brain amyloid proteins in aged mammals and humans with Alzheimer’s Disease. Science 235: 873–877.CrossRefGoogle Scholar
  22. Selkoe, D.J., Duffy, L.K., Nukina, N., Soachim, C.L., Podlisny, M.B. and Kosik, K.S. (1987b). Biochemical analysis of amyloid filaments and paired helical filaments and their respective contribution to neuronal degeneration in Alzheimer’s disease. In: Neurochemistry of Aging, P. Davies and C. Finch, eds., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (in press).Google Scholar
  23. Tanzi, R.E., Gusella, J.F., Watkins, P.C., Bruns, G.A.P., St. George-Hyslop, P., Van Keuren, M.L., Patterson, D., Pagan, S., Kurnit, D.M. and Neve, R.L. (1987a). Amyloid β-protein gene: c-DNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science 235:880–884.CrossRefGoogle Scholar
  24. Tanzi, R.E., St. George-Hyslop, P.H., Haines, J.L., Polinsky, R.J., Nee, L., Foncin, J.-F., Neve, R.L., McClatchey, A.I., Conneally, P.M. and Gusella, J.F. (1987b). Nature 329:156–157.CrossRefGoogle Scholar
  25. Terry, R.D. (1978). In: Alzheimer’s Disease: Senile Dementia and Related Disorders, R. Katzman, R.D. Terry and K.L. Bick, eds., Rowen Press, New York, pp. 11–14, 377-382.Google Scholar
  26. Travis, J., Bowen, J. and Baugh, R. (1978). Human α-1-antichymotrypsin: interaction with chymotrypsin-like proteinases. Biochem. 17:5651.CrossRefGoogle Scholar
  27. Travis, J. and Salvesen, G.S. (1982). Human plasma proteinase inhibitors. Ann. Rev. Biochem. 52:655–709.CrossRefGoogle Scholar
  28. Van Broekhoven, C., Genthe, A.,M., Vandenberghe, A., Horsthemke, B., Backhovens, H., Raeymaekers, P., Van Hul, W., Wehnert, A., Gheuens, J., Cras, P., Bruyland, M., Martin, J.J., Salbaum, M., Multhaup, G., Masters, C.L., Beyreuther, K., Gurling, H.M.D., Mullan, M.J., Holland, A., Barton, A., Irving, N., Williamson, R., Richards, S.J. and Hardy, J.A. (1987). Failure of familial Alzheimer’s disease to segregate with the A4-amyloid gene in several European families. Nature 329:153–155.CrossRefGoogle Scholar
  29. Weitkamp, L.R., Nee, L., Keats, B., Polinsky, R.J. and Guttormsen, S. (1983). Alzheimer Disease: Evidence for susceptibility loci on chromosomes 6 and 14. Amer. J. Hum. Genet. 35:443–453.Google Scholar
  30. Wisniewski, H.M., Ghetti, B. and Terry, R.D. (1973). Neuritic (senile) plaques and filamentous changes in aged rhesus monkeys. J. Neuropathol. Exp. Neurol. 32:566–584.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Carmela R. Abraham
    • 1
  • Dennis J. Selkoe
    • 2
    • 3
  • Huntington Potter
    • 1
  1. 1.Dept. of NeurobiologyHarvard Medical SchoolBostonUSA
  2. 2.Center for Neurologic DiseasesBrigham and Women’s HospitalBostonUSA
  3. 3.Dept. of Neurology (Neuroscience)H.M.S.USA

Personalised recommendations