Advertisement

Haplotype Analisis of Familial Amyloidotic Polyneuropathy: an Evidence for Multiple Origins of the Val→met Mutation

  • Katsuji Yoshioka
  • Hirokazu Furuya
  • Hiroyuki Sasaki
  • Maria Joao Mascarenhas Saraiva
  • Pedro P. Costa
  • Yoshiyuki Sakaki
Chapter

Abstract

The variant of transthyretin (TTR, also called prealbumin) has been identified as a major component of amyloid fibrils of familial amyloidotic polyneuropathy (FAP). In particular, the variant with30 Val→Met substitution has been commonly found in FAP of various ethnic groups. To understand the origin and spread of the Val→Met mutation, we have analyzed DNA polymorphisms associated with the TTR gene in six Japanese FAP families and several Portuguese FAP patients. Three distinct haplotypes associated with the Val→Met mutation were identified in Japanese FAP families, one of which was also found in Portuguese patients. Nucleotide sequence analysis revealed that the Val→Met mutation is caused by a C-T transition at a CpG dinucleotide sequence of mutation hotspot on the anti-sense strand of TTR gene DNA. These results suggest that the Val→Met mutation has frequently recurred in human population to generate FAP families in various ethnic groups.

Keywords

Amyloid Fibril Sodium Lauryl Sulfate Nucleotide Sequence Analysis Distinct Haplotype Familial Amyloidotic Polyneuropathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrade, C. (1952) Brain 75, 408–427.CrossRefGoogle Scholar
  2. 2.
    Costa, P.P., Figueira, A.S. and Bravo, F.R. (1978) Proc. Natl. Acad. Sci., USA. 75., 4499–4503.CrossRefGoogle Scholar
  3. 3.
    Saraiva, M.J.M., Costa, P.P., Birken, S. and Goodman, D.S.(1983) Trans. Assoc. Amer. Phys. 96, 261–270.Google Scholar
  4. 4.
    Dwulet, F.E. and Benson, M.D. (1984) Proc. Natl. Acad. Sci. USA. 81, 694–698.CrossRefGoogle Scholar
  5. 5.
    Tawara, S., Nakazato, M., Kangawa, K., Matsuo, H. and Araki, S. (1983) Biochem. Biophys. Res. Commun. 116, 880–888.CrossRefGoogle Scholar
  6. 6.
    Kametani, F., Tonoike, H., Hoshi, A., Shinoda, T., and Kito, S. (1984) Biochem. Biophys. Res. Commun. 125, 622–628.CrossRefGoogle Scholar
  7. 7.
    Saraiva, M.J.M., Sherman, W. and Goodman, D.S. (1986) J. Lab. Clin. Med. 108, 17–22.Google Scholar
  8. 8.
    Nakazato, M., Kangawa, K., Minamino, N., Tawara, S., Matsuo, H. and Araki, S. (1984) Biochem. Biophys. Res. Commun. 123, 921–928.CrossRefGoogle Scholar
  9. 9.
    Pras, M., Prelli, F., Franklin, E.C. and Frangione, B. (1983) Proc. Natl. Acad. Sci. USA. 80, 539–542.CrossRefGoogle Scholar
  10. 10.
    Wallace, M.R., Dwulet, F.E., Conneally, P.M. and Benson, M.D. (1986) J. Clin. Invest. 78, 6–12.CrossRefGoogle Scholar
  11. 11.
    Benson, M.D. and Dwulet, F.E. (1985) Clin. Res. 33, 590a (Abstr.).Google Scholar
  12. 12.
    Youssoufian, H., Kazazian, H.H., Phillips, D.G., Aronis, S., Tsiftis, G., Brown, V.A. and Antonarakis, S.E. (1986) Nature 324, 380–382.CrossRefGoogle Scholar
  13. 13.
    Cox, D.W., Woo, S.L.C. and Mansfield, T. (1985) Nature 316, 79–81.CrossRefGoogle Scholar
  14. 14.
    Yoshioka, K., Yoshioka, N., Nakabeppu, K and Sakaki, Y. (1986) Nucleic Acids Res. 14, 3147 (1986).CrossRefGoogle Scholar
  15. 15.
    Yoshioka, K., Sasaki, H., Yoshioka, N., Furuya, H., Harada, T., Kito, S. and Sakaki, Y. (1986) Mol. Biol. Med. 3, 319–328.Google Scholar
  16. 16.
    Sasaki, H., Sakaki, Y., Matsuo, H., Goto, I., Kuroiwa, Y., Sahashi, K., Takahashi, A., Shinoda, T., Isobe, T., and Takagi, Y. (1984) Biochem. Biophys. Res. Commun. 125, 636–642.CrossRefGoogle Scholar
  17. 17.
    Saiki, R. K., Scharf, S., Faloona, F., Mullis, K.B., Horn, G.T. Erlich, H.A. and Arnheim, N. (1985) Science 230, 1350–1354.CrossRefGoogle Scholar
  18. 18.
    Sasaki, H. Yoshioka, N., Takagi, Y. and Sakaki, Y. (1985) Gene 37, 191–197.CrossRefGoogle Scholar
  19. 19.
    Sasaki, H., Sakaki, Y., Takagi, Y., Sahashi, K., Takahashi, A., Isobe, T., Shinoda, T., Matsuo, H., Goto, I., and Kuroiwa, Y. (1985) Lancet i, 100.CrossRefGoogle Scholar
  20. 20.
    Kurnit, D.M. and Hoehn, H. (1979) Annu. Rev. Genet. 13, 235–258.CrossRefGoogle Scholar
  21. 21.
    Li, W.-H., Gojobori, T. and Nei, M. (1981) Nature 292, 237–239.CrossRefGoogle Scholar
  22. 22.
    Saraiva, M.J.M., Birken, S., Costa, P.P. and Goodman, D.S. (1984) J. Clin. Invest. 74, 104–119.CrossRefGoogle Scholar
  23. 23.
    Ide, M. Mita, S., Ikegawa, S., Maeda, S., Shimada, K. and Araki, S. (1986) Hum Genet 73 281–285.CrossRefGoogle Scholar
  24. 24.
    Barker, D., Schafer, M. and White, R. (1984) Cell 36, 131–138.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Katsuji Yoshioka
    • 1
  • Hirokazu Furuya
    • 1
  • Hiroyuki Sasaki
    • 1
  • Maria Joao Mascarenhas Saraiva
    • 2
  • Pedro P. Costa
    • 2
  • Yoshiyuki Sakaki
    • 1
  1. 1.Research Laboratory for Genetic InformationKyushu University 18Maidashi, Fukuoka 812Japan
  2. 2.Instituto Nacional de Saude, Centro de Estudos de ParamiloidoseHospital de Sto. AntonioPortoPortugal

Personalised recommendations