Advertisement

Amyloid Fibril Formation by Polymerization of Abnormal Transthyretin

  • Shunsuke Migita
  • Hiroshi Nakashima
Chapter

Abstract

A hypothesis is presented in order to explain why single substitution of amino-acid in transthyretin induce familiar amyloidotic polyneuropathy (FAP). Single amino-acid substitution reported in FAP locate both end (C and D beta strands and the near) of transthyretin tetramer molecule. This means that original conformation of transthyretin does not affect so much by the single substitution. Originally the place concentrated amino-acid substitutions is hydrophilic region. Increase of the hydrophobicity or change of conformation at C and D strand region may induce a endless polymerization of abnormal tetramer and may make amyloid fibril. Amyloidogenesis need a long period of time, that means a weak tendency of polymerization will be sufficient with pathogenesis. Once polymerization will start, many non-covalent bindings between the large protein molecules proceed succesively, resulting insoluble amyloid.

Keywords

Amyloid Fibril Beta Sheet Weak Tendency Single Substitution Tetramer Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Glenner, G.G., Eanes E.D., Balden H.A., et al: J. Histochem. Cytochem. 22;1141, 1974CrossRefGoogle Scholar
  2. 2.
    Kirschner D.A., Abraham C., Seikos D.J.: Proc. Natl. Acad. Sci. USA 83;503, 1986CrossRefGoogle Scholar
  3. 3.
    Gorevic P.D., Castano E.M., Sarma R., Frangione B.: Bioch. Biophys. Res. Commun. 147;854, 1987CrossRefGoogle Scholar
  4. 4.
    Tawara S., Nakazato M., Kangawa K., et al:Bioch. Biophys. Res. Commun. 116;860, 1983CrossRefGoogle Scholar
  5. 5.
    Benson M.D., Dwulet F.E.: Amyloidosis, ed. by G.G. Glenner, E.F. Osserman et al. p367, Plenum Press NY, 1986Google Scholar
  6. 6.
    Wallac M.D., Dwulet F.E., Connoally P.M., Benson M.D.: J. Clin. Invest. 78;6, 1986CrossRefGoogle Scholar
  7. 7.
    Pras M., Prelli F.E., Franklin E.C., et al.: Proc. Natl. Acad. Sci. USA 80;539, 1983CrossRefGoogle Scholar
  8. 8.
    Nakazato M., Tawara S., Kangawa K., et al.: Bioch. Biophys. Res. Commun. 123;921, 1984CrossRefGoogle Scholar
  9. 9.
    Benson M., Dwulet F.E.: Clin. Research 33; 590a, 1985Google Scholar
  10. 10.
    Kanda Y., Goodman D.S., Canfield R.E., et al.: J. Biol. Chem. 249;6795, 1974Google Scholar
  11. 11.
    Blake C.C.P., Geison M.J., Swan L.D.A.: J. Mol. Biol. 88;1, 1974CrossRefGoogle Scholar
  12. 12.
    Blake C.C.P., Geison M.J., Oatley S.J., et al.: J. Mol. Biol. 121;339, 1978CrossRefGoogle Scholar
  13. 13.
    Bernstein F.C., Koetzle T.F., Williams G.J.B., et al.: J. Mol. Biol. 112;535, 1977CrossRefGoogle Scholar
  14. 14.
    Wakasugi S., Maeda S., Shimada K., et al.: J. Biochem. 98;1707, 1985Google Scholar
  15. 15.
    Chau P.Y., Fasman G.D.: Biochemistry 13;222, 1974CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Shunsuke Migita
    • 1
  • Hiroshi Nakashima
    • 1
    • 2
  1. 1.Department of Molecular Immunology, Cancer Research InstituteKanazawa UniversityJapan
  2. 2.School of Medical Profession, Kanazawa UniversityKanazawaJapan

Personalised recommendations