The Kp Hierarchy

  • Jouko Mickelsson
Part of the Plenum Monographs in Nonlinear Physics book series (PMNP)


As an application of the theory of infinite-dimensional Grassmannians and the representation theory of gl 1 we shall study in this chapter certain nonlinear “exactly solvable” systems of differential equations. Exactly solvable means here that the nonlinear system can be transformed to an (infinite-dimensional) linear problem. A prototype of the equations is the Korteweg-de Vries equation
$$\frac{{\partial u}}{{\partial t}} = \frac{3}{3}u\frac{{\partial u}}{{\partial x}} + \frac{1}{4}\frac{{{\partial ^3}u}}{{\partial {x^3}}}$$
. It turns out that it is more natural to consider an infinite system of equations like that above, for obtaining explicit solutions. The set of equations is called the KdV hierarchy and it can be derived from another set of equations, the KP (Kadomtsev-Petviashvili) hierarchy. The Grassmannian approach can be more directly applied to the KP hierarchy and therefore we shall mainly consider the KP case.


Vertex Operator High Weight Vector Baker Function Solvable Means Formal Differential Operator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Jouko Mickelsson
    • 1
  1. 1.University of JyväskyläJyväskyläFinland

Personalised recommendations