Differentiation of Human Colon Cancer Cells

  • Alain Zweibaum
Part of the NATO ASI Series book series (NSSA, volume 218)


As it is the case for many tissues, there has been an increasing interest over the last decade in the use of cell cultures for studies related to the functions of the intestinal epithelium. These studies have been essentially performed with either organ cultures or primary cultures1,2. However there are some limitations in the application of such systems as they are difficult to manipulate, do not allow reproducible dynamic studies, and are not homogenous. An ideal tool would be the use of established differentiated cell lines originating from normal tissues. However, and despite attempts from a number of laboratories1,2,3, it has not been possible to establish such cell lines so far. In fact, the only cell lines that have been established have regularly failed to express any of the characteristics of terminal differentiation which would make them useful for studies related to the physiological functions of the intestinal epithelium1,2,3. This failure has been however circumvented by the finding that cell lines established from human colon carcinomas are able to express in culture most of the differentiation characteristics and functions normally associated with the human intestinal epithelium1,2,4,5,6. As appropriate as these cell lines may be for studying a number of functions related to the intestinal epithelium, it must be emphasized that, although these cells are closely similar to, and share a number of physiological properties with intestinal cells, they are not small intestinal, but colonic cells, and are not normal, but malignant cells.


Vasoactive Intestinal Peptide Brush Border Sodium Butyrate33 Human Colonic Carcinoma Cell Line Human Colon Adenocarcinoma Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Kedinger, K. Haffen, and P. Simon-Asmmann, Intestinal tissue and cell cultures. Differentiation, 36: 71–85 (1985).CrossRefGoogle Scholar
  2. 2.
    M. Neutra, and D. Louvard, Differentiation of intestinal cells in vitro. In: Functional Epithelial Cells in Culture. Alan R. Liss, Inc., p. 363-398 (1989).Google Scholar
  3. 3.
    A. Quaroni, and R.J. May, Establishment and characterization of intestinal epithelial cell cultures. In: Methods in Cell Biology, edited by G.C. Harris, B.F. Trump, and G.D. Stoner, Academic Press, New York, vol. 21B, p. 403–427 (1980).Google Scholar
  4. 4.
    M. Rousset, The human colon carcinoma cell lines HT-29 and Caco-2: two in vitro models for the study of intestinal differentiation. Biochimie, 68: 1035–1040 (1986).PubMedCrossRefGoogle Scholar
  5. 5.
    C.L. Laboisse, Differentiation of colon cells in culture. In: The Cell and Molecular Biology of Colon Cancer. L.H. Augenlicht ed., CRC Press, pp 28-45 (1989).Google Scholar
  6. 6.
    A. Zweibaum, M. Laburthe, E. Grasset, and D. Louvard, The use of cultured cell lines in studies of intestinal cell differentiation and function. In: Handbook of Physiology, vol. Intestinal Transport of the Gastrointestinal System (M. Field, and R.A. Frizzell, eds), Am. Physiol. Soc. (1989) (in press).Google Scholar
  7. 7.
    F.J. Primus, C.A. Clark, and D.G. Goldenberg, Immunoperoxidase localization of carcinoembryonic antigen in normal human intestinal mucosa. J. Natl. Cancer Inst., 63: 1031–1039 (1981).Google Scholar
  8. 8.
    A. Bretscher, and K. Weber, Villin: the major microfilamentassociated protein of the intestinal microvillus. Proc. Natl. Acad. Sci. USA, 76: 2321–2325 (1979).PubMedCrossRefGoogle Scholar
  9. 9.
    G. Semenza, Anchoring and biosynthesis of stalked brush border membrane proteins: glycosidases and peptidases of enterocytes and of renal tubuli. Annu. Rev. Cell Biol., 2: 255–314 (1986).PubMedCrossRefGoogle Scholar
  10. 10.
    A. Zweibaum, H.P. Hauri, E. Sterchi, I. Chantret, K. Haffen, J. Bamat, and B. Sordat, Immunohistological evidence obtained with monoclonal antibodies of small intestinal brush border hydrolases in human colon cancers and foetal colons. Int. J. Cancer, 34: 591–598 (1984).PubMedCrossRefGoogle Scholar
  11. 11.
    A. Zweibaum, N. Triadou, M. Kedinger, C. Augeron, S. Robine-Léon, M. Pinto, M. Rousset, and K. Haffen, Sucrase-isomaltase: a marker of foetal and malignant epithelial cells of the human colon. Int. J. Cancer, 32: 407–412 (1983).PubMedCrossRefGoogle Scholar
  12. 12.
    B. Lacroix, M. Kedinger, P. Simon-Assmann, M. Rousset, A. Zweibaum, and K. Haffen. Developmental pattern of brush border enzymes in the human fetal colon. Correlation with some morphogenetic events. Early Hum. Dev., 9: 95–103 (1984).PubMedCrossRefGoogle Scholar
  13. 13.
    M. Rousset, E. Dussaulx, G. Chevalier, and A. Zweibaum, Expression phenotypique des antigènes coliques polymorphes (WZ) dans les adénocarcinomes du côlon humain. C.R. Acad. Sci. (Paris), 286: 659–662 (1978).Google Scholar
  14. 14.
    J. Bara, F. Loisillier, and P. Burtin, Antigens of gastric and intestinal mucous cells in human colonic tumours. Br. J. Cancer, 41: 209–221 (1980).PubMedCrossRefGoogle Scholar
  15. 15.
    I. Chantret, A. Barbat, E. Dussaulx, M.G. Brattain, and A. Zweibaum, Epithelial polarity, villin expression and enterocytic differentiation of cultured human colon carcinoma cells: a survey of 20 cell lines. Cancer Res., 48: 1936–1942 (1988)PubMedGoogle Scholar
  16. 16.
    J. Fogh, J.M. Fogh, and T. Orfeo, One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J. Nati. Cancer Inst., 59: 221–225 (1977).Google Scholar
  17. 17.
    J. Fogh, and G. Trempe, New human tumor cell lines. In: Human Tumor Cells “In vitro”. Edited by J. Fogh, New York, Plenum Press, p. 115–141 (1975).Google Scholar
  18. 18.
    M. Pinto, S. Robine-Léon, M.D. Appay, M. Kedinger, N. Triadou, E. Dussaulx, B. Lacroix, P. Simon-Assmann, K. Haffen, J. Fogh, and A. Zweibaum, Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol. Cell., 47: 323–330 (1983).Google Scholar
  19. 19.
    M. Laburthe, M. Rousset, C. Rouyer-Fessard, A. Couvineau, I. Chantret, G. Chevalier, and A. Zweibaum, A. Development of vasoactive intestinal peptide-responsive adenylate cyclase during enterocytic differentiation of Caco-2 cells in culture: evidence for an increased receptor level. J. Biol. Chem., 262: 10180–10184 (1987).PubMedGoogle Scholar
  20. 20.
    S. Robine, C. Huet, R. Moll, C. Sahuquillo-Merino, E. Coudrier, A. Zweibaum, and D. Louvard, Can villin be used to identify malignant and undifferentiated normal digestive epithelial cells?, Proc. Natl. Acad. Sci. USA, 82: 8488–8492 (1985).PubMedCrossRefGoogle Scholar
  21. 21.
    A. Biais, P. Bissonnette, and A. Bertheloot, Common characteristics for Na+-dependent sugar transport in Caco-2 cells and human fetal colon. J. Membrane Biol., 99: 113–125 (1987).CrossRefGoogle Scholar
  22. 22.
    M. Laburthe, M. Rousset, G. Chevalier, C. Boissard, C. Dupont, A. Zweibaum, and G. Rosselin, Vasoactive intestinal peptide control of cyclic adenosine 3′: 5′-monophosphate in seven human colorectal adenocarcinoma cell lines in culture. Cancer Res., 40: 2529–2533 (1980).PubMedGoogle Scholar
  23. 23.
    T.E. Hugues, J.M. Ordouas, and E.J. Schaeffer, Regulation of intestinal apolipoprotein B synthesis and secretion by Caco-2 cells. Lack of fatty acid effects and control by intracellular calcium ion. J. Biol. Chem., 263: 3425–3431 (1988).Google Scholar
  24. 24.
    E. Grasset, J. Bernabeu, and M. Pinto, Epithelial properties of human colonic carcinoma cell line Caco-2: effect of secretagogues. Am. J. Physiol. 248 (Cell Physiol. 17): C410–C418 (1985).PubMedGoogle Scholar
  25. 25.
    E. Grasset, M. Pinto, E. Dussaulx, A. Zweibaum, and J.F. Desjeux, Epithelial properties of human colonic carcinoma cell line Caco-2: electrical parameters. Am. J. Physiol. 247 (Cell Physiol. 16): C260–C267, 1984.PubMedGoogle Scholar
  26. 26.
    H.P. Hauri, E.E. Sterchi, D. Bienz, J. Fransen, and A. Marwer, Expression and intracellular transport of microvillus membrane hydrolases in human intestinal epithelial cells. J. Cell Biol., 101: 838–851 (1985).PubMedCrossRefGoogle Scholar
  27. 27.
    H.P. Hauri, Biogenesis and intracellular transport of intestinal brush border membrane hydrolases. Use of antibody probes and tissue culture. In: Subcellular Biochemistry, G.R. Harris ed., Plenum Press, p. 155-219 (1988).Google Scholar
  28. 28.
    M. Rousset, M. Laburthe, M. Pinto, G. Chevalier, C. Rouyer-Fessard, E. Dussaulx, G. Trugnan, N. Boige, J.L. Brun, and A. Zweibaum, Enterocytic differentiation and glucose utilization in the human colon tumor cell line Caco-2: modulation by forskolin. J. Cell. Physiol., 123: 377–385 (1985).PubMedCrossRefGoogle Scholar
  29. 29.
    M. Rousset, I. Chantret, D. Darmoul, G. Trugnan, C. Sapin, F. Green, D. Swallow, and A. Zweibaum, Reversible forskolin-induced impairment of sucrase-isomaltase mRNA levels, biosynthesis and transport to the brush border membrane in Caco-2 cells. J. Cell. Physiol. (in press).Google Scholar
  30. 30.
    J.L. Gaillard, P. Berche, J. Mounier, S. Richard, and P. Sansonetti, In vitro model of penetration and intracellular growth of Listeria monocytogenes in the human enterocyte-like cell line Caco-2. Infect. Immun., 55: 2822–2829 (1987).PubMedGoogle Scholar
  31. 31.
    M. Pinto, M.D. Appay, P. Simon-Assmann, G. Chevalier, N. Dracopoli, J. Fogh, and A. Zweibaum, Enterocytic differentiation of cultured human colon cancer cells by replacement of glucose by galactose in the medium. Biol. Cell., 44: 193–196 (1982).Google Scholar
  32. 32.
    A. Zweibaum, M. Pinto, G. Chevalier, E. Dussaulx, N. Triadou, B. Lacroix, K. Haffen, J.L. Brun, and M. Rousset, Enterocytic differentiation of a supopulation of the human colon tumor cell line HT-29 selected for growth in sugar-free medium and its inhibition by glucose. J. Cell. Physiol., 122: 21–29 (1985).PubMedCrossRefGoogle Scholar
  33. 33.
    B.M. Wice, G. Trugnan, M. Pinto, M. Rousset, G. Chevalier, E. Dussaulx, B. Lacroix, and A. Zweibaum, The intracellular accumulation of UDP-N-acetylhexosamines is concomitant with the inability of human colon cancer cells to differentiate. J. Biol. Chem., 260: 139–146 (1985).PubMedGoogle Scholar
  34. 34.
    C. Huet, C. Sahuquillo-Merino, E. Coudrier, and D. Louvard, Absorption and mucus-secreting subclones isolated from a multipotent intestinal cell line (HT-29) provide new models for cell polarity and terminal differentiation. J. Cell Biol., 105: 345–357 (1987).PubMedCrossRefGoogle Scholar
  35. 35.
    O. Godefroy, C. Huet, L.A.C. Blair, C. Sahuquillo-Merino, and D. Louvard, Differentiation of a clone isolated from the HT-29 cell line: polarized distribution of histocompatibility antigens (HLA) and of transferrin receptors. Biol. Cell., 63: 41–55 (1988).PubMedGoogle Scholar
  36. 36.
    Augeron, C., and C.L. Laboisse, Emergence of permanently differentiated cell clones in a human colonic cancer cell line in culture after treatment with sodium butyrate. Cancer Res., 44: 3961–3969 (1984).PubMedGoogle Scholar
  37. 37.
    Augeron, C., J.J. Maoret, C.L. Laboisse, and E. Grasset, Permanently differentiated cell clones established from the human colonic adenocarcinoma cell line HT-29: possible models for the study of ion transport and mucus production. In: Ion-Gradient-Coupled Transport, Edited by F. Alvarado & C.H. Van Os, Amsterdam, Elsevier, (1989) (in press).Google Scholar
  38. 38.
    G. Trugnan, M. Rousset, I. Chantret, A. Barbat, and A. Zweibaum, The post-translational processing of sucrase-isomaltase in HT-29 cells is a function of their state of enterocytic differentiation. J. Cell. Biol., 104: 1199–1205 (1987).PubMedCrossRefGoogle Scholar
  39. 39.
    W.E.W. Roediger, Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology, 83: 424–429 (1982).PubMedGoogle Scholar
  40. 40.
    C. Denis, V. Mils, J.C. Murat, M. Rousset, M. Pinto, V. Trocheris, A. Zweibaum, and H. Paris, Evidence for development of gluconeogenesis in the HT-29 human colon adenocarcinoma cell line grown in a glucose-free medium. IRCS Med. Sci., 13: 898–899 (1985).Google Scholar
  41. 41.
    E. Pringault, M. Arpin, A. Garcia, J. Finidori, and D. Louvard, A human villin cDNA clone to investigate the differentiation of intestinal and kidney cells in vivo and in culture. EMBO J., 5: 3119–3124 (1986).PubMedGoogle Scholar
  42. 42.
    Laburthe, M. Rousset, C. Boissard, G. Chevalier, A. Zweibaum, and G. Rosselin, Vasoactive intestinal peptide: a potent stimulator of adenosine 3′: 5′-cyclic monophosphate accumulation in gut carcinoma cell lines in culture. Proc. Natl. Acad. Sci. USA, 75: 2772–2775 (1978).PubMedCrossRefGoogle Scholar
  43. 43.
    A. Couvineau, M. Rousset, and M. Laburthe, Molecular identification and structural requirement of vasoactive intestinal peptide (VIP) receptors in the human colon adenocarcinoma cell line, HT-29. Biochem. J., 231: 139–143 (1985).PubMedGoogle Scholar
  44. 44.
    M. Laburthe, C. Augeron, C. Rouyer-Fessard, I. Roumagnac, J.J. Maoret, E. Grasset, and C. Laboisse, Functional VIP receptors in the human mucus-secreting colonic cell line C1.16E. Am. J. Physiol. (Gastrointest. Liver Physiol. 19): G443–G450 (1989).Google Scholar
  45. 45.
    P. Kitabgi, C. Poustis, C. Granier, J. Van Rietschoten, J. Rivier, J.L. Morgat, and P. Freychet, Neurotensin binding to extraneural and neural receptors: comparison with biological activity and structure-activity relationships. Mol. Pharmacol., 18: 11–19 (1980).PubMedGoogle Scholar
  46. 46.
    P. Kitabgi, C. Poustis, A. Zweibaum, and P. Freychet, Peptide receptors in colonic tumor cells: specific binding of epidermal growth factor to the HT-29 cell line. In: Hormone Receptors in Digestion and Nutrition. Ed. by G. Rosselin, P. Fromageot & S. Bonfils, Elsevier/North Holland Biomedicai Press, p. 255-260 (1979).Google Scholar
  47. 47.
    H. Paris, B. Bouscarel, C. Cortinovis, and J.C. Murat, Growth-related variation of alpha2-adrenergic receptivity in the HT-29 adenocarcinoma cell line from human colon. FEBS Lett., 184: 82–86 (1985).PubMedCrossRefGoogle Scholar
  48. 48.
    P. Simon-Assmann, F, Bouziges, D. Daviaud, K. Haffen, and M. Kedinger, Synthesis of glycosaminoglycans by undifferentiated and differentiated HT-29 human colonic cancer cells. Cancer Res., 47: 4478–4484 (1987).PubMedGoogle Scholar
  49. 49.
    B.J. Siddiqui, J. Byrd, F.J. Fearney, and Y.S. Kim, Comparison of metabolically labelled mucins of LS-174T human colon cancer cells in tissue culture and xenograft. Tumor Biology (1989) (in press).Google Scholar
  50. 50.
    H. Murakami, and H. Masui, Hormonal control of human colon carcinoma cell growth in serum-free medium. Proc. Natl. Acad. Sci. USA, 77: 3464–3468 (1980).PubMedCrossRefGoogle Scholar
  51. 51.
    K. Dharmsathaphorn, K.G. Mandel, H. Masui, and J.A. McRoberts, VIP-induced chloride secretion by a colonic epithelial cell line: direct participation of a basolaterally localized Na+, K+, Cl cotransport system. J. Clin. Invest., 75: 462–471 (1985).PubMedCrossRefGoogle Scholar
  52. 52.
    K. Dharmsathaphorn, K.G. Mandel, J.A. McRoberts, C.A. Cartwright, and H. Masui, Utilization of a human colonic tumor cell line as a model to study electrolyte transport in the intestine. In: Intestinal Absorption and Secretion (Falk Symp. No 36) Ed. by E. Skadhauge & K. Heintze, Lancaster: MTP, p. 325–333 (1984).Google Scholar
  53. 53.
    K. Dharmsathaphorn, K.G. Mandel, J.A. McRoberts, L.D. Tisdale, and H. Masui, A human colonic tumor cell line that maintains vectorial electrolyte transport. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G204–G208 (1984).PubMedGoogle Scholar
  54. 54.
    A. Weymer, P. Huott, W. Liu, J.A. McRoberts, and K. Dharmsathaphorn, Chloride secretory mechanism induced by prostaglandin E1 in a colonic epithelial cell line. J. Clin. Invest., 76: 1828–1836 (1985).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Alain Zweibaum
    • 1
  1. 1.Unité de Recherches sur la Différenciation et la Neuroendocrinologie de Cellules Digestives (INSERM U178)Villejuif CedexFrance

Personalised recommendations