Membrane Recycling, Adsorptive and Receptor-Mediated Endocytosis by Primary Bovine Cerebral Microvessel Endothelial Cell Monolayers in Vitro

  • Thomas J. Raub
  • Carolyn R. Newton
Part of the NATO ASI Series book series (NSSA, volume 218)


Within recent years, we have realized that the blood-brain barrier (BBB) is an interactive, highly selective interface between the brain interstitial space and blood-borne molecules. It is the unique functional and morphological characteristics of the endothelial cells which comprise the majority of the BBB surface area that define this specialized structure. However, increasing evidence shows that communication between the endothelia and surrounding cell types is responsible for expression of the BBB phenotype1.


Phorbol Myristate Acetate Transferrin Receptor Nerve Growth Factor Receptor Microvessel Endothelial Cell Cell BioI 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.C. Janzer and M.C. Raff, Astrocytes induce blood-brain barrier properties in endothelial cells, Nature (Lond.) 325: 253–257 (1987).CrossRefGoogle Scholar
  2. 2.
    W.M. Pardridge, Recent advances in blood-brain barrier transport, Ann. Rev. Pharmacol. Toxicol. 28: 25–39 (1988).CrossRefGoogle Scholar
  3. 3.
    H.J.L. Frank and W.M. Pardridge, A direct in vitro demonstration of insulin binding to isolated brain microvessels, Diabetes 30: 757–761 (1980).CrossRefGoogle Scholar
  4. 4.
    A.L. McCall, J. Valente, R. Cordero, N.B. Ruderman, and K. Tornheim, Metabolic characterization of isolated cerebral microvessels: ATP and ADP concentrations, Microvasc. Res. 35: 325–333 (1988).PubMedCrossRefGoogle Scholar
  5. 5.
    I. Sussman, M.P. Carson, A.L. McCall., V. Schultz, N.B. Ruderman, and K. Tornheim, Energy state of bovine cerebral microvessels: comparison of isolation methods, Microvasc. Res. 35: 167–178 (1988).PubMedCrossRefGoogle Scholar
  6. 6.
    W.M. Pardridge, Receptor-mediated peptide transport through the blood-brain barrier, Endocrine Rev. 7: 314–330 (1986).CrossRefGoogle Scholar
  7. 7.
    J.B. Fishman, J.B, Rubin, J.V. Handrahan, J.R. Connor, and R.E. Fine, Receptor-mediated transcytosis of transferrin across the blood-brain barrier, J. Neurosci. Res. 18: 299–304 (1987).PubMedCrossRefGoogle Scholar
  8. 8.
    D. Triguero, J.B. Buciak, J. Yang, and W.M. Pardridge, Blood-brain barrier transport of cationized immunoglobulin G: enhanced delivery compared to native protein, Proc. Natl. Acad. Sci. (USA) 86: 4761–4765 (1989).CrossRefGoogle Scholar
  9. 9.
    P.D. Bowman, S.R. Ennis, K.E. Rarey, A.L. Betz, and G.W. Goldstein, Brain microvessel endothelial cells in tissue culture: a model for study of blood-brain barrier permeability, Ann. Neurol. 14: 396–402 (1983).PubMedCrossRefGoogle Scholar
  10. 10.
    K.L. Audus and R.T. Borchardt, Bovine brain microvessel endothelial cell monolayers as a model system for the blood-brain barrier, Ann. N.Y. Acad. Sci. 507: 9–18 (1987).PubMedCrossRefGoogle Scholar
  11. 11.
    D.N. McKinley and H.S. Wiley, Reassessment of fluid-phase endocytosis and diacytosis in monolayer cultures of human fibroblasts, J. Cell. Physiol. 136: 389–397 (1988).PubMedCrossRefGoogle Scholar
  12. 12.
    T.S. Reese and M.J. Karnovsky, Fine structural localization of a blood-brain barrier to exogenous peroxidase, J. Cell Biol. 34: 207–217 (1967).PubMedCrossRefGoogle Scholar
  13. 13.
    J.A. Swanson, B.D. Yirinec, and S.C. Silverstein, Phorbol esters and horseradish peroxidase stimulate pinocytosis and redirect the flow of pinocytosed fluid in macrophages, J. Cell Biol. 100: 851–859 (1985).PubMedCrossRefGoogle Scholar
  14. 14.
    F.L. Guillot, K.L. Audus and T.J. Raub, Fluid-phase endocytosis by primary cultures of bovine brain microvessel endothelial cell mono-layers, Microvasc. Res., in press (1989).Google Scholar
  15. 15.
    P.F. Davies, S.C. Seiden, and S.M. Schwartz, Enhanced rates of fluid pinocytosis during exponential growth and monolayer regeneration by cultured arterial endothelial cells. J. Cell. Physiol. 102: 119–127 (1980).PubMedCrossRefGoogle Scholar
  16. 16.
    J.M. Besterman, J.A. Aihart, R.C. Woodworth, and R.B. Low, Exocy-cytosis of pinocytosed fluid in cultured cells: kinetic evidence for rapid turnover and compartmentation, J. Cell Biol. 91: 716–727 (1981).PubMedCrossRefGoogle Scholar
  17. 17.
    S.K. Williams and R.C. Wagner, Regulation of micropinocytosis in capillary endothelium by multivalent cations, Microvasc. Res. 21: 175–182 (1981).PubMedCrossRefGoogle Scholar
  18. 18.
    C.R. Newton and T.J. Raub, Characterization of the transferrin receptor in primary cultures of bovine brain capillary endothelial cells, J. Cell Biol. 107: 770a.Google Scholar
  19. 19.
    R.D. Broadwell, B.J. Balin, M. Salcman, and R.S. Kaplan, Brain-blood barrier? Yes and no, Proc. Natl. Acad. Sci. USA 80: 7352–7356 (1983).PubMedCrossRefGoogle Scholar
  20. 20.
    R.M. Steinman, I.S. Mellman, W.A. Muller, and Z.A. Cohn, Endocytosis and the recycling of plasma membrane, J. Cell Biol. 96: 1–27 (1983).PubMedCrossRefGoogle Scholar
  21. 21.
    I. Mellman, Molecular sorting during endocytosis, Kidney Intl. 32: S–184–S–195 (1987).Google Scholar
  22. 22.
    T.J. Raub and K.L. Audus, Adsorptive endocytosis by cultured bovine brain endothelial cells, J. Cell Biol. 105: 312a.Google Scholar
  23. 23.
    T.J. Raub and K.L. Audus, Adsorptive endocytosis and recycling of ricin agglutinin by cultured monolayers of primary bovine brain microvessel endothelial cells, submitted to J. Cell Sci.Google Scholar
  24. 24.
    D.Z. Gerhart, M.S. Zionis, and L.R. Drewes, Light and electron microscopic localization of D-galactosyl residues in capillary endothelial cells of the canine cerebral cortex, J. Histochem. Cytochem. 34: 641–648 (1986).PubMedCrossRefGoogle Scholar
  25. 25.
    A.W. Vorbrodt, D.H. Bodrogowska, A.S. Lossinsky, and H.M. Wisniewski, Ultrastructural localization of lectin receptors on the luminal and abluminal aspects of brain micro-blood vessels, J. Histochem. Cytochem. 34: 251–261 (1986).PubMedCrossRefGoogle Scholar
  26. 26.
    P.L. Debbage, H.-J. Gabius, K. Bise, and F. Marguth, Cellular glyco-conjugates and their potential endogenous receptors in the cerebral microvasculature of man: a glycohistochemical study, Eur.J. Cell Biol. 46: 425–434 (1988).PubMedGoogle Scholar
  27. 27.
    R.D. Broadwell, B.J. Balin, and M. Salcman, Transcytotic pathway for blood-borne protein through the blood-brain barrier, Proc. Natl. Acad. Sci. USA 85: 632–636 (1988).PubMedCrossRefGoogle Scholar
  28. 28.
    G. Griffiths and K. Simons, The trans Golgi network: sorting at the exit site of the Golgi complex, Science 234: 438–443 (1986).PubMedCrossRefGoogle Scholar
  29. 29.
    W. Stoorvogel, H.J. Geuze, J.M. Griffith, and G.J. Strous, The pathways of endocytosed transferrin and secretory protein are connected in the trans-Golgi reticulum, J. Cell Biol. 106: 1821–1829 (1988).PubMedCrossRefGoogle Scholar
  30. 30.
    T.J. Raub, J.B. Denny, and R.M. Roberts, Cell surface glycoproteins of CHO cells. I. Internalization and rapid recycling, Exp. Cell Res. 165: 73–91 (1986).PubMedCrossRefGoogle Scholar
  31. 31.
    A.K. Kumagai, J.B. Eisenberg, and W.M. Pardridge, Absorptive-mediated endocytosis of cationized albumin and a β-endorphin-cationized albumin chimeric peptide by isolated brain capillaries, J. Biol. Chem. 262: 15214–15219 (1987).PubMedGoogle Scholar
  32. 32.
    K.R. Smith and R.T. Borchardt, Permeability and mechanism of albumin, cationized albumin, and glycosylated albumin transcellular transport across monolayers of cultured bovine brain capillary endothelial cells, Pharm. Res. 6: 466–473 (1989).PubMedCrossRefGoogle Scholar
  33. 33.
    M.W. Brightman, 1989, The anatomic basis of the blood-brain barrier, in: “Implications of the Blood-Brain Barrier and its Manipulation, Vol. 1,” E.A. Neuwelt, ed., Plenum Medical Book Co., New York, pp. 53–83.Google Scholar
  34. 34.
    P. Wang-Iverson, P.M. DeRosa, and W.V. Brown, 1988, Plasma lipo-protein interaction with endothelial cells, in: “Endothelial Cells, Vol. 1,” U.S. Ryan, ed., CRC Press, Boca Raton, Florida, pp. 179–187.Google Scholar
  35. 35.
    S. Meresse, C. Delbart, J.-C. Fruchart, and R. Cecchelli, Low-density lipoprotein receptors on endothelium of brain capillaries, J. Neurochem. 53: 340–345 (1989).PubMedCrossRefGoogle Scholar
  36. 36.
    R.E. Pitas, J. Boyles, R.W. Mahley, and D.M. Bissell, Uptake of chemically modified low density lipoproteins in vivo is mediated by specific endothelial cells, J. Cell Biol. 100: 103–117 (1985).PubMedCrossRefGoogle Scholar
  37. 37.
    J. Gaffney, D. West, F. Arnold, A. Sattar, and S. Kumar, Differences in the uptake of modified low density lipoproteins by tissue cultured endothelial cells, J. Cell Sci. 79: 317–325 (1985).PubMedGoogle Scholar
  38. 38.
    M.P. Carson and C.C. Haudenschild, Microvascular endothelium and pericytes: high yield, low passage cultures, In Vitro Cell. Develop. Biol. 22: 344–354 (1986).CrossRefGoogle Scholar
  39. 39.
    H.V. Vinters, S. Reave, P. Costello, J.P. Girvin, and S.A. Moore, Isolation and culture of cells derived from human cerebral micro-vessels, Cell Tiss. Res. 249: 657–667 (1987).CrossRefGoogle Scholar
  40. 40.
    M. Simionescu, N. Ghinea, A. Fixman, M. Lasser, L. Kukes, N. Simionescu, and G.E. Palade, The cerebral microvasculature of the rat: structure and luminal surface properties during early development, J. Submicrosc. Cytol. Pathol. 20: 243–261 (1988).PubMedGoogle Scholar
  41. 41.
    J.E. Schnitzer, W.W. Carley, and G.E. Palade, Albumin interacts specifically with a 60-kDa microvascular endothelium glycoprotein, Proc. Natl. Acad. Sci. USA 85: 6773–6777 (1988).PubMedCrossRefGoogle Scholar
  42. 42.
    N. Ghinea, M. Eskenasy, M. Simionescu, and N. Simionescu, Endothelial albumin binding proteins are membrane-associated components exposed on the cell surface, J. Biol. Chem. 264: 4755–4758 (1989).PubMedGoogle Scholar
  43. 43.
    L. Ghitescu, A. Fixman, M. Simionescu, and N. Simionescu, Specific binding sites for albumin restricted to plasmalemmal vesicles of continuous capillary endothelium: receptor-mediated transcytosis, J. Cell Biol. 102: 1304–1311 (1986).PubMedCrossRefGoogle Scholar
  44. 44.
    W.A. Jeffries, M.R. Brandon, S.V. Hunt, A.F. Williams, K.C. Gatter, and D.Y. Mason, Transferrin receptor on endothelium of brain capillaries, Nature (Lond.) 312: 162–163 (1984).CrossRefGoogle Scholar
  45. 45.
    J.M. Hill, M.R. Ruff, R.J. Weber, and C.B. Pert, Transferrin receptors in rat brain: neuropeptide-like pattern and relationship to iron distribution, Proc. Natl. Acad. Sci. USA 82: 4553–4557 (1985).PubMedCrossRefGoogle Scholar
  46. 46.
    R. Soda and M. Tavassoli, Transendothelial transport (transcytosis) of iron-transferrin complex in the bone marrow, J. Ultrastruc. Res. 88: 18–29 (1984).CrossRefGoogle Scholar
  47. 47.
    W.M. Pardridge, J. Eisenberg, and J. Yang, Human blood-brain barrier transferrin receptor, Metab. 36: 892–895 (1987).CrossRefGoogle Scholar
  48. 48.
    B. Bloch, T. Popovici, S. Chouham, M.J. Levin, D. Tuil, and A. Kahn, Transferrin gene expression in choroid plexus of the adult rat brain, Brain Res. Bull. 18: 573–576 (1987).PubMedCrossRefGoogle Scholar
  49. 49.
    J.E. Lamb, F. Ray, J.H. Ward, J.P. Kushner, and J. Kaplan, Internali-zation and subcellular localization of transferrin and transferrin receptors in HeLa cells, J. Biol. Chem. 258: 8751–8758 (1983).PubMedGoogle Scholar
  50. 50.
    J.A. Hanover and R.B. Dickson, 1985, Transferrin: receptor-mediated endocytosis and iron delivery, in: “Endocytosis,” I. Pastan and M.C. Willingham, eds., Plenum Press, New York, pp. 131–161.CrossRefGoogle Scholar
  51. 51.
    S.S. Buys, L.H. Gren, and J. Kaplan, Phorbol esters and calcium ionophores inhibit internalization and accelerate recycling of receptors in macrophages, J. Biol. Chem. 262: 12970–12976 (1987).PubMedGoogle Scholar
  52. 52.
    T.E. McGraw, K.W. Dunn, and F.R. Maxfield, Phorbol ester treatment increases the exocytic rate of the transferrin receptor recycling pathway independent of serine-24 phosphorylation, J. Cell Biol. 106: 1061–1066 (1988).PubMedCrossRefGoogle Scholar
  53. 53.
    R.C. Wagner, C.S. Robinson, P.J. Cross, and J.J. Devenny, Endocytosis and exocytosis of transferrin by isolated capillary endothelium, Microvasc. Res. 25: 387–396 (1983).PubMedCrossRefGoogle Scholar
  54. 54.
    M. Marsh and A. Helenius, Adsorptive endocytosis of Semliki Forest virus, J. Molec. Biol. 142: 439–454 (1980).PubMedCrossRefGoogle Scholar
  55. 55.
    W.M. Pardridge, J. Eisenberg, and J. Yang, Human blood-brain barrier insulin receptor, J. Neurochem. 44: 1771–1778 (1985).PubMedCrossRefGoogle Scholar
  56. 56.
    B.T. Keller, K.R. Smith, and R.T. Borchardt, Transport barriers to absorption of peptides, Pharm. Weekblad Sci. 10: 38–39 (1988).Google Scholar
  57. 57.
    R.G. Rosenfeld, H. Pham, B.T. Keller, R.T. Borchardt, and W.M. Pardridge, Demonstration and structural comparison of receptors for insulin-like growth factor-I and-II (IGF-I and-II) in brain and blood-brain barrier, Biochim. Biophys. Res. Commun. 149: 159–166 (1987).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Thomas J. Raub
    • 1
  • Carolyn R. Newton
    • 2
  1. 1.Drug Delivery Systems ResearchThe Upjohn CompanyKalamazooUSA
  2. 2.Department of BiologyKalamazoo CollegeKalamazooUSA

Personalised recommendations