Transport of Drugs Across the Blood-Brain Barrier: In Vitro and in Vivo Strategies

  • Joost B. M. M. van Bree
  • Albertus G. de Boer
  • Meindert Danhof
  • Douwe D. Breimer
Part of the NATO ASI Series book series (NSSA, volume 218)


The transport rate across the BBB is an essential kinetic parameter for drugs acting on the central nervous system, because it determines the time to onset and the intensity of drug action.1,2 For the study of BBB-passage in vivo, various models have been described, however most techniques require the use of many experimental animals and offer only limited information.3–5 Moreover, in the in vivo situation the estimated transport parameters are inevitably influenced by physiological factors which cannot be kept under control during the experiment (e.g. cerebral blood flow, hormone levels, stress levels).6 Therefore comparison of BBB transport parameters obtained in different experimental settings is hazardous.


Tight Junction Atrial Natriuretic Factor Large Neutral Amino Acid Neutral Amino Acid Transport Brain Microvessel Endothelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goldstein, A., Aronow, L. and Kaiman, S.M.: (1974) Principles of drug action. pp 193–198, Wiley and Sons, New York.Google Scholar
  2. 2.
    Danhof, M. and Levy, G.: (1984) Kinetics of drug action in disease states. Int. J. Pharmacol. Exp. Ther. 229: 44–50.Google Scholar
  3. 3.
    Crone, C.: (1963) The permeability of capillaries in various organs as determined by use of the indicator dilution technique. Acta Physiol. Scand. 58: 292–305.PubMedCrossRefGoogle Scholar
  4. 4.
    Oldendorf, W.H.: (1970) Measurement of brain uptake of radiolabeled substances using a tritiated water internal standard. Brain Res. 24: 372–376.PubMedCrossRefGoogle Scholar
  5. 5.
    Rapoport, S.I., Ohno, K. and Pettigrew, K.D.: (1979) Drug entry into the brain. Brain Res. 172: 354–359.PubMedCrossRefGoogle Scholar
  6. 6.
    Hertz, M.M. and Paulsen, O.B.: (1980) Heterogeneity of cerebral capillary flow in man and its consequences for estimation of blood-brain barrier permeability. J. Clin. Invest. 65: 1145–1151.PubMedCrossRefGoogle Scholar
  7. 7.
    Siakotos, A.N., Rouser, G. and Fleischer, S.: (1969). Isolation of highly purified human and bovine brain endothelial cells and nuclei and their phospholipid composition. Lipids 4: 234–239.PubMedCrossRefGoogle Scholar
  8. 8.
    Brendel, K., Meezan, E. and Carlson, E.C.: (1974) Isolated brain microvessels: a purified metabolically active preparation from bovine cerebral cortex. Science 185: 953–955.PubMedCrossRefGoogle Scholar
  9. 9.
    Djuricic, B.M. and Mrsulja, B.B.: (1977) Enzymatic activity of the brain: microvessels vs total forebrain homogenate. Brain Res. 138: 561–564.PubMedCrossRefGoogle Scholar
  10. 10.
    Orlowski, M., Sessa, G. and Green, J.P.: (1974) Gamma-glutamyl transpeptidase in brain capillaries: possible site of a blood-brain barrier for amino acids. Science 184: 66–68.PubMedCrossRefGoogle Scholar
  11. 11.
    Caldwell, P.R.B., Segal, B.C., Hsu, K.C., Das, M. and Soffer, K.L.: (1978) Angiotensin converting enzyme: accumulation in medium from cultured endothelial cells. Biochem. Biophys. Res. Commun. 82: 1147–1153.CrossRefGoogle Scholar
  12. 12.
    Jaffe, E.A., Hoyer, L.W. and Nachman, R.L.: (1973) Synthesis of antihemophilic factor antigen by cultured human endothelial cells. J. Clin. Invest. 52: 2757–2764.PubMedCrossRefGoogle Scholar
  13. 13.
    Voyta, J.C., Via, D.P., Butterfield, C.E.; Zetter, B.R.: (1984) Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J. Cell Biol. 99: 286–297.CrossRefGoogle Scholar
  14. 14.
    Goldstein, G.W., Wolinski, J.S., Csejtey, J. and Diamond, I.: (1975) Isolation of metabolically active capillaries from rat brain. J. Neurochem. 25: 715–717.PubMedCrossRefGoogle Scholar
  15. 15.
    Panula, P., Joo, F. and Rechardt, L.: (1978) Evidence for the presence of viable endothelial cells in cultures derived from dissociated rat brain. Experientia 34: 95–97.PubMedCrossRefGoogle Scholar
  16. 16.
    Hjelle, J.T., Baird-Lambert, J., Cardinale, G., Spector, S. and Udenfried, S.: (1978) Isolated microvessels the blood-brain barrier in vitro. Proc. Natl. Acad. Sci. U.S.A. 75: 4544–4548.PubMedCrossRefGoogle Scholar
  17. 17.
    DeBault, L.E., Kahn, L.E., Frommes, S.P. and Cancilla, P.A.: (1979) Cerebral microvessels and derived cells in tissue culture: isolation and preliminary characterisation. In Vitro 15: 473–487.PubMedCrossRefGoogle Scholar
  18. 18.
    Williams, S.K., Gillis, J.F., Matthews, M.A., Wagner, R.C. and Bitenski, M.W.: (1980) Isolation and characterization of brain endothelial cells: morphology and enzyme activity. J. Neurochem. 35: 374–381.PubMedCrossRefGoogle Scholar
  19. 19.
    Phillips, P., Kumar, P., Kumar, S., and Waghe, M.: (1979) Isolation and characterization of endothelial cells from rat and cow brain white matter. J. Anat. 129: 261–272.PubMedGoogle Scholar
  20. 20.
    Spatz, M., Bembry, J., Dodson, R.F., Hervonen, H. and Murray, M.R.: (1980) Endothelial cell cultures derived from isolated cerebral microvessels. Brain Res. 191: 577–582(1980).PubMedCrossRefGoogle Scholar
  21. 21.
    Bowman, P.D., Betz, A.L., Ar, D., Wolinsky, J.S., Penney, J.B., Shivers, R.R. and Goldstein, G.W.: (1981) Primary culture of capillary endothelium from rat brain. In Vitro 17: 353–362.PubMedCrossRefGoogle Scholar
  22. 22.
    Bowman, P.D., Betz, A.L. and Goldstein, G.W. (1982) Primary culture of microvascular endothelial cells from bovine retina: selective growth using fibronectin coated substrate and plasma derived serum. In Vitro 18: 626–632.PubMedCrossRefGoogle Scholar
  23. 23.
    Bowman, P.D., Ennis, S.R., Rarey, K.E., Betz, A.L. and Goldstein, G.W.: (1983) Brain microvessel endothelial cells in tissue culture: a model for study of blood-brain barrier permeability. Ann. Neurol. 14: 396–402.PubMedCrossRefGoogle Scholar
  24. 24.
    Betz, A.L., Csejtey, J. and Goldstein, G.W.: (1979) Hexose transport and phosphorylation by capillaries isolated from rat brain. Am. J. Physiol. 236: c96–102c.PubMedGoogle Scholar
  25. 25.
    Cangiano, C., Cardelli, P., James, J.H., Rossi, F., Patriziz, M.A., Brackett, K.A., Strom, R. and Fischer, J.E.: (1983) Brain microvessels take up large neutral amino acids in exchange for glutamine. J. Biol. Chem. 258: 8949–8954.PubMedGoogle Scholar
  26. 26.
    Goldstein, G.W.: (1979) Relation of potassium transport to oxidative metabolism in isolated brain capillaries. J. Physiol. (Lond.) 286: 185–195.Google Scholar
  27. 27.
    Betz, A.L. and Goldstein, G.W.: (1981) Development changes in metabolism and transport properties isolated from rat brain. J. Physiol. (Lond.) 312: 365–376.Google Scholar
  28. 28.
    Choi, T.B. and Pardridge, W.M.: (1986) Phenylalanine transport at the human blood-brain barrier: studies with isolated human brain capillaries. J. Biol. Chem. 261: 6536–6541.PubMedGoogle Scholar
  29. 29.
    Betz, A.L. and Goldstein, G.W.: (1978) Polarity of the blood-brain barrier: neutral amino acid transport into isolated brain capillaries. Science 202: 225–227.PubMedCrossRefGoogle Scholar
  30. 30.
    Betz, A.L., Firth, J.A. and Goldstein, G.W.: (1980) Polarity of the blood-brain barrier: distribution of enzymes between the luminal and the abluminal membranes of brain capillary endothelial cells. Brain Res. 192: 17–28.PubMedCrossRefGoogle Scholar
  31. 31.
    Betz, A.L.: (1983) Sodium transport in capillaries isolated from rat brain. J. Neurochem. 41: 1150–1157.PubMedCrossRefGoogle Scholar
  32. 32.
    Pardridge, W.M. and Mietus, L.J.: (1981) Enkephalin and the blood-brain barrier: studies of binding and degradation in isolated brain capillaries. Endocrinology 109: 1138–1142.PubMedCrossRefGoogle Scholar
  33. 33.
    Ghersi-Egea, J.F., Minn, A. and Siest, G.: (1988) A new aspect of the protective function of the blood-brain barrier: activities of four drug-metabolizing enzymes in isolated rat brain. Life Sci. 42: 2515–2523.PubMedCrossRefGoogle Scholar
  34. 34.
    Chabrier, P.E., Roubert, P., Pias, P. and Braquet, P.: (1988) Blood-brain barrier and atrial natriuretic factor. Can. J. Physiol. Pharmacol. 66: 276–279.PubMedCrossRefGoogle Scholar
  35. 35.
    White, F.P., Dutton, G.R. and Norenberg, M.D.: (1981) Microvessels isolated from rat brain: localization of astrocyte processes by immunohistochemical techniques. J. Neurochem. 36: 328–332.PubMedCrossRefGoogle Scholar
  36. 36.
    Goldstein, G.W., Wolinski, J.S. and Csejtey, J.: (1975) Isolation of metabolically active capillaries from rat brain. J. Neurochem. 25: 715–717.PubMedCrossRefGoogle Scholar
  37. 37.
    Diglio, CA., Grammas, P., Giacomelli, F. and Wiener, J.: (1982) Primary culture of rat cerebral microvascular endothelial cells: isolation, growth and characterization. Lab. Invest. 46: 554–563.PubMedGoogle Scholar
  38. 38.
    Folkman, J., Haudenschild, C.C. and Zetter, B.R.: (1979) Long-term culture of capillary endothelial cells. Proc. Natl. Acad. Sci. U.S.A. 76: 5217–5221.PubMedCrossRefGoogle Scholar
  39. 39.
    Audus, K.L. and Borchardt, R.T.: (1986) Characterization of an in vitro model for studying drug transport and metabolism. Pharm. Res. 3: 81–87.CrossRefGoogle Scholar
  40. 40.
    Rim, S., Audus, K.L. and Borchardt, R.T.: (1986) Relationship of octanol/water and octanol/buffer partition coefficients to transcellular diffusion across brain microvessel endothelial cells. Int. J. Pharm. 32: 79–84.CrossRefGoogle Scholar
  41. 41.
    Baranczyk, A., Audus, K.L. and Borchardt, R.T.: (1985) Catecholamine metabolizing bovine brain microvessel endothelial cell monolayers. J. Neurochem. 46: 1956–1969.CrossRefGoogle Scholar
  42. 42.
    Audus, K.L. and Borchardt, R.T.: (1986) Characterization of the large neutral amino acid transport system of bovine brain microvessel endothelial cell monolayers. J. Neurochem. 47: 484–488.PubMedCrossRefGoogle Scholar
  43. 43.
    Van Bree, J.B.M.M., Audus, K.L. and Borchardt, R.T.: (1988) Carrier-mediated transport of baclofen across monolayers of bovine brain endothelial cells in primary culture. Pharm. Res. 5: 369–371.PubMedCrossRefGoogle Scholar
  44. 44.
    Van Bree, J.B.M.M., DeBoer, A.G., Danhof, M., Ginsel, L.A. and Breimer, D.D.: (1988) Characterization of an in vitro blood-brain barrier: effects of molecular size and lipophilicity on cerebrovascular endothelial transport rates of drugs. J. Pharmacol. Exp. Ther. 247: 1233–1239.PubMedGoogle Scholar
  45. 45.
    Van Bree, J.B.M.M., DeBoer, A.G., Verhoef, J.C., Danhof, M. and Breimer, D.D.: (1989) Transport of vasopressin fragments across the blood-brain barrier: in vitro studies using monolayer cultures of bovine brain endothelial cells. J. Pharmacol. Exp. Ther. 249: 901–905.PubMedGoogle Scholar
  46. 46.
    Bradbury, M.W.B., Patlak, C.S. and Oldendorf, W.H.: (1975) Analysis of brain uptake and loss of radiotracers after intracarotid injection. Am. J. Physiol. 229: 1110–1115.PubMedGoogle Scholar
  47. 47.
    Fenstermacher, J.D., Blasberg, R.G. and Patlak, C.S.: (1981) Methods for quantifying the transport of drugs across the blood-brain systems. Pharmac. Ther. 14: 217–248.CrossRefGoogle Scholar
  48. 48.
    Oldendorf, W.H.: (1974) Blood-brain barrier permeability to drugs. Ann. Rev. Pharmacol. 14: 239–248.CrossRefGoogle Scholar
  49. 49.
    Yudelevich, D.L. and Derose, N.: (1971) Blood-brain transfer of glucose and other molecules measured by rapid indicator dilution. Am. J. Physiol. 220: 841–846.Google Scholar
  50. 50.
    Pardridge, W.M., Landaw, E.M., Miller, L.P., Braun, L.D. and Oldendorf, W.H.: (1983) Carotid injection technique: bounds for bolus mixing by plasma and brain. J. Cerebral Blood Flow Metabol. 5: 576–583.CrossRefGoogle Scholar
  51. 51.
    Kastin, A.J., Zadina, J.E., Banks, W.A. and Graf, M.V.: (1984) Misleading concepts in the field of brain peptides. Peptides 5: 249–253.PubMedCrossRefGoogle Scholar
  52. 52.
    Fawcett Wilson, J.: (1988) Low permeability of the blood-brain barrier to nanomolar concentrations of immunoreactive alpha-melanotropin. Psychopharmacol. 96: 262–266.Google Scholar
  53. 53.
    Zlokovic, B., Lipovac, M.N., Begley, DJ., Davson, H. and Rakic, L.: (1988) Slow penetration of thyrotropin-releasing hormone across the blood-brain barrier of an in situ perfused guinea pig brain. J. Neurochem. 51: 252–257.PubMedCrossRefGoogle Scholar
  54. 54.
    Banks, W.A. and Kastin, A.J.: (1985) Permeability of the blood-brain barrier to neuropeptides: the case for penetration. Psychoneuroendocrinology 10: 385–399.PubMedCrossRefGoogle Scholar
  55. 55.
    Brodie, B.B., Kurz, H. and Shanker, L.S.: (1960) The importance of dissociation constant and lipid solubility in influencing the passage of drugs into CSF. J. Pharmacol. Exp. Ther. 130: 519–528.Google Scholar
  56. 56.
    Ohno, K., Pettigrew, K.D. and Rapoport, S.I.: (1978) Lower limits of cerebrovascular permeability to non-electrolytes in the conscious rat. Am. J. Physiol. 235: H299–H307.PubMedGoogle Scholar
  57. 57.
    Preston, E. and Haas, N.: (1986) Defining the lower limits for blood-brain barrier permeability: factors affecting the magnitude and interpretation of permeability-area products. J. Neurosci. Res. 16: 709–719.PubMedCrossRefGoogle Scholar
  58. 58.
    Van Bree, J.B.M.M., Baljet, A.V., Van Geyt, A., DeBoer, A.G., Danhof, M. and Breimer, D.D.: (1989) The unit impulse response procedure for the pharmacokinetic evaluation of drug entry into the central nervous system. J. Pharmacokin. Biopharm. in press.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Joost B. M. M. van Bree
    • 1
  • Albertus G. de Boer
    • 1
  • Meindert Danhof
    • 1
  • Douwe D. Breimer
    • 1
  1. 1.Division of Pharmacology, Center for Bio-Pharmaceutical SciencesUniversity of LeidenLeidenThe Netherlands

Personalised recommendations