Transferrin Endocytosis and Fluid Phase Uptake in the Differentiable Intestinal Cell Line HT-29

  • Christian Huet
  • Odile Godefroy
  • Cristina Ibarra
  • Alice Dautry-Varsat
  • Daniel Louvard
Part of the NATO ASI Series book series (NSSA, volume 218)


Cells such as epithelial or neuronal cells, when fully differentiated, exhibit a clear functional asymmetry related to morphological asymmetry (Gumbiner & Louvard, 1985).


Tight Junction HT29 Cell MDCK Cell Basolateral Membrane Transferrin Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aisen P, Leibman A, & Zweier J (1978) Stoichiometric and site characteristics of the binding of iron to human transferrin. J. Biol. Chem. 256: 1930–1937.Google Scholar
  2. Anderson R G W, Brown M S, Beisigel U, & Goldstein J L (1982). Surface distribution and recycling of the low density lipoprotein receptor as visualized with anti-receptor antibodies. J. Cell. Biol. 93: 523–531.PubMedCrossRefGoogle Scholar
  3. Banerjee D, Flanagan P R, Cluett J, & Valberg L S. (1986) Transferrin receptors in the human gastrointestinal tract. Relationship to body iron stores. Gastroenterology 91: 861–869.PubMedGoogle Scholar
  4. Beguinot L, Lyall R M, Willingham M C, & Pastan I (1984). Down regulation of the epidermal growth factor receptor in KB cells is due to receptor internalization and subsequent degradation in lysosomes. Proc. Natl. Acad. Sci. USA 81: 2384–2388.PubMedCrossRefGoogle Scholar
  5. Bleil D, & Bretscher M S (1982) Transferrin receptor and its recycling in Hela cells. EMBO J. 1: 351: 355.PubMedGoogle Scholar
  6. Caplan M J, Stow J L, Newman A P, Madri J, Anderson H C, Farquard M G, Palade G E, & Jamieson J D. (1987) Dependence on pH of polarized sorting of secreted proteins. Nature 329: 632: 635.PubMedCrossRefGoogle Scholar
  7. Cereijido M, Robbins E S, Dolan W J, Rotundo C A, & Sabatini D D. (1978) Polarized monolayers formed by epithelial cells on a permeable and translucent. support. 77: 853–880.Google Scholar
  8. Ciechanover A, Schwartz A L, Dautry-Varsat A, & Lodish H F (1983) Kinetics of internalization and recycling of transferrin and the transferrin receptor in a human hepatoma cell line J. Biol. Chem. 258: 9681: 9689.PubMedGoogle Scholar
  9. Dautry-Varsat A, Ciechanover A, & Lodish H (1983) pH and the recycling of transferrin during the receptor mediated endocytosis. Proc. Natl. Acad. Sci. USA, 80: 2258–2262.PubMedCrossRefGoogle Scholar
  10. Fogh J, & Trempe G (1975) New tumor cell line. In: Human Tumor cells in vitro. (J. Fogh, ed), New York, Plenum Press. p115–141.Google Scholar
  11. Fuller S D, & Simons K (1986). Transferrin receptor polarity and recycling accuracy in “tight” and “leaky” strains of Madin-Darby Canine Kidney Cells. J.Cell. Biol. 103: 1767–1779.PubMedCrossRefGoogle Scholar
  12. Garcia J G N, Silfinger-Birnboim A, Del Vecchio P J, Fenton J W, & Malik A B. (1986) Thrombin induces increases in albumin transport across cultured endothelial monolayers. J. Cell. Physiol. 128: 96–104.PubMedCrossRefGoogle Scholar
  13. Gavin J R, Roth J, Neville D M, De Meyts P, & Buell D N (1974). Insulin dependent regulation of insulin receptor concentration: a direct demonstration in cell culture. Proc. Natl. Acad. Sci. USA, 71: 84–88.PubMedCrossRefGoogle Scholar
  14. Geuze H J, Slot J W, & Strous G J (1983). Intracellular site of asialoglycoprotein receptor-ligand uncoupling: double-label immunoelectron microscopy during receptor mediated endocytosis. Cell. 32: 277–287.PubMedCrossRefGoogle Scholar
  15. Godefroy O, Huet C, Blair L, Sahuquillo-Merino C, & Louvard D (1988) Differentiation of a clone isolated from the HT29 cell line: polarized distribution of histocompatibility antigens (HLA) and of transferrin receptors. Biol. Cell. 63: 41–55.PubMedGoogle Scholar
  16. Goldstein J L, Brown M S, Anderson R G W, Russel D W, & Scneider W J (1985). Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Ann. Rev. Cell Biol. 1: 1–39.PubMedCrossRefGoogle Scholar
  17. Gonzalez-Mariscal L, Chavez de Ramirez B, & Cereijido M (1985). Tight junction formation in cultured epithelial cells (MDCK). J. Membr. Biol. 86: 113–125.PubMedCrossRefGoogle Scholar
  18. Goud B, Huet C, & Louvard D (1985). Assembled and unassembled pools of clathrin: a quantitative study using an enzyme immunoassay. J. Cell Biol. 100: 521–527.PubMedCrossRefGoogle Scholar
  19. Grasset E, Pinto M, Dussaulx E, Zweibaum A, & Desjeux J F (1984) Epithelial properties of a human colonic carcinoma cell line Caco-2: electrical parameters. Am. J. Physiol. 247: C260–C267.PubMedGoogle Scholar
  20. Gumbiner B, & Louvard D (1985). Localized barriers in the plasma membrane: a common way to form domains. Trends Biochem. Sci. 10: 435–438.CrossRefGoogle Scholar
  21. Helenius A, Mellman A, Wall D, & Hubbard A (1983) Endosomes. Trends in Biochem. Sci. 8: 245–250CrossRefGoogle Scholar
  22. Huet C, Ash J F, & Singer S J (1980). The antibody-induced clustering and endocytosis of HLA antigens on cultured fibroblasts. Cell. 21: 429–438.PubMedCrossRefGoogle Scholar
  23. Huet C, Sahuquillo-Merino C, Coudrier E, & Louvard D (1987) Absorptive and mucus secreting subclones isolated from a multipotent intestinal cell line (HT-29) provide new models for cell polarity and terminal differentiation. J. Cell. Biol. 105: 345–357.PubMedCrossRefGoogle Scholar
  24. Iacoppetta B J, Rothenberger S, & Kühn L C (1988) A role for the cytoplasmic domain in transferrin receptor sorting and coated pit formation during endocytosis. Cell. 54: 485–489.CrossRefGoogle Scholar
  25. Karin M & Mintz B (1981) Receptor mediated endocytosis of transferrin in developmentally totipotent mouse teratocarcinoma stem cells. J. Biol. Chem. 256: 3245–3252.PubMedGoogle Scholar
  26. Kelly R B (1985) Pathways of protein secretion in eukaryotes. Science, 230: 25–32.PubMedCrossRefGoogle Scholar
  27. Kenny A J, & Maroux S (1982). Topology of microvillar membrane hydrolases of kidney and intestine. Physiol. Rev., 62: 91–128.PubMedGoogle Scholar
  28. Kirby W N, & Parr E L (1979). The occurrence and distribution of H2 antigens on mouse intestinal epithelial cells. J. Histochem. Cytochem. 27: 746–750.PubMedCrossRefGoogle Scholar
  29. Klausner R D, Ashwell G, Van Renswoude J V, Harford J B, & Bridges K R (1983a). Binding of apotransferrin to K562 cells: explanation of the transferrin cycle. Proc. Natl. Acad. Sci. USA 80: 2263–2266.PubMedCrossRefGoogle Scholar
  30. Kondor-Koch C, Bravo R, Fuller S D, Cutler D & Garoff, H (1985). Exocytic pathways exist to both the apical and the basolateral cell surface of the polarized epithelial cell MDCK. Cell 43: 297–306.PubMedCrossRefGoogle Scholar
  31. Kühn L C, McClelland A, & Ruddle F H, (1984) Gene transfer, expression and molecular cloning of the human transferrin gene receptor. Cell 37: 95–103.PubMedCrossRefGoogle Scholar
  32. Kyte J (1976). Immunoferritin determination of the distribution of (Na-K) ATPase over the plasma membranes of renal convolulated tubules. II Proximal segment. J. Cell. Biol. 68: 304–318.PubMedCrossRefGoogle Scholar
  33. Larkin J M., Sztul E S., & Palade G E (1986). Phosphorylation of the rat hepatic polymeric IgA receptor. Proc. Natl. Acad. Sci. USA, 83: 4759–4763.PubMedCrossRefGoogle Scholar
  34. Leblond C P, & Cheng H (1976). Identification of stem cells in the small intestine of the mouse. in “Stem cells of renewing populations. “Cairnic A.B., Lala P.K. &D.G. Osmond eds. Academic Press, pp 7-31.Google Scholar
  35. Louvard D (1980). Apical membrane aminopeptidase appears at site of cell-cell contact in cultured kidney epithelial cells. Proc. Natl. Acad. Sci. USA 77: 4132–4136.PubMedCrossRefGoogle Scholar
  36. Lubinski I, & Huet C (1984). Independent variation in the number of coated pits and of coated vesicles in cultured fibroblasts. Bio. Cell. 52: 119–128.CrossRefGoogle Scholar
  37. Marsh M, & Helenius A (1980) Adsorptive endocytosis of Semliki Forest Virus. J. Mol. Biol. 142: 439–454.PubMedCrossRefGoogle Scholar
  38. Maxfield F R (1982) Weak bases and ionophores rapidly and reversibly raise the pH of endocytotic vesicles in cultured mouse fibroblasts. J. Cell. Biol. 95: 676–681.PubMedCrossRefGoogle Scholar
  39. Meyer D I (1982). The signal hypothesis: a working model. Trends in Biochem. Sci. 7: 320–321.CrossRefGoogle Scholar
  40. Montesano R, Roth J, Robert A & Orci L (1982). Non coated membrane invaginations are involved in binding and internalization of cholera and tetanus toxins. Nature 296: 651–653.PubMedCrossRefGoogle Scholar
  41. Mooseker M (1985). Organization, chemistry and assembly of the cytosqueletal apparatus of the intestinal brush borders. Ann. Rev. Cell Biol. 1: 261–293.CrossRefGoogle Scholar
  42. Pearse B M F (1976). Clathrin: a unique protein associated with intracellular transfer of membrane coated vesicles. Proc. Nat. Acad. Sci. USA 73: 1225–1259.CrossRefGoogle Scholar
  43. Pearse B M F (1987). Clathrin and coated vesicles. EMBO J. 6: 2507–2512.PubMedGoogle Scholar
  44. Pinto M, Appay M D, Simon-Assmann P, Chevalier G, Dracopoli N, Fogh J & Zweibaum A (1982) Enterocytic differentiation of cultured human colon cancer cells by replacement of glucose by galactose in the medium. Biol. Cell. 47: 323–330.Google Scholar
  45. Reggio H, Coudrier E, & Louvard D (1982). Surface and cytoplasmic domains in polarized epithelial cells. in Membranes in Growth and Development, Alan Liss, Inc. 150 Fith avenue, New York, NY 10011, pp 89-105.Google Scholar
  46. Steinman R M, Mellman I S, Muller W A, & Cohn Z A (1983). Endocytosis and the recycling of plasma membrane. J. Cell Biol. 104: 1261–1268.Google Scholar
  47. Sporn A, Marder V J, & Wagner D D (1989) Differing polarity of the constitutive and regulated secretory pathways for von Willebrand factor in endothelial cells. J. Cell. Biol. 108: 1283–1289.PubMedCrossRefGoogle Scholar
  48. Tojo S J, Germeraad S, King D S, & Fristrom J W, (1987). Polarized secretion of an ectopic protein in Drosophila salivary gland in vivo. EMBO J. 6: 2249–2254.PubMedGoogle Scholar
  49. Traber M G, Kayden H J, & Rindler M J (1987). Polarized secretion of newly synthesized lipoproteins by the Caco 2 human intestinal cell line. J. Lipid Res., 28: 1350–1363.PubMedGoogle Scholar
  50. Trugnan G, Rousset M, Chantret I, Barbat A, & Zweibaum A (1987). The posttranslational processing of sucrase isomaltase in HT 29 cells is a function of their state of enterocytic differentiation. J. Cell. Biol. 104: 1199–1205.PubMedCrossRefGoogle Scholar
  51. Ungewickel E, & Branton D (1981). Asssembly units of clathrin coats. Nature 289: 420–422.CrossRefGoogle Scholar
  52. Urban J, Parczyck K, Leutz A, Kayne M, & Kondor-Koch C (1987). Constitutive apical secretion of an 80 kD sulfated glycoprotein complex in the polarized epithelial Madin-Darby canine cell line. J. Cell. Biol. 105: 2735–2743.PubMedCrossRefGoogle Scholar
  53. Van Meer G, Gumbiner B, & Simons K (1986). The tight junction does not allow lipid molecules to diffuse from one epithelial cell to the next. Nature 232: 639–641.CrossRefGoogle Scholar
  54. Van Meer G, & Simons K (1986). The function of tight junctions in maintaining differences in lipid composition between the apical and the basolateral cell surface domains of MDCK cells. EMBO J. 5: 1455–1464.PubMedGoogle Scholar
  55. Vega-Salas D E, Salas P J I, Gundersen D & Rodriguez-Boulan E (1987). Formation of the apical pole of epithelial (Madin-Darby Canine Kidney) cells: polarity of an apical protein is independent of tight junctions while segregation of a basolateral marker requires cell-cell interactions. J. Cell. Biol. 104: 905–916.PubMedCrossRefGoogle Scholar
  56. Von Bonsdorff C H, Fuller S D, & Simons K (1985). Apical and basolateral endocytosis in Madin-Darby-Canine Kidney (MDCK) cells grown on nitro cellulose filters. EMBO J. 4: 2781–2792.Google Scholar
  57. Wall D A, & Hubbard A L (1981). Galactose specific recognition systems of mammalian liver: receptor distribution on the hepatocyte cell surface. J. Cell. Biol. 90: 687–696.PubMedCrossRefGoogle Scholar
  58. Willingham M C, Hanover J A., Dickson R B. & Pastan I (1984). Morphologic characterization of the pathway of transferrin endocytosis and recycling in human KB cells. Proc. Natl. Acad. Sci. USA 81: 175–179.PubMedCrossRefGoogle Scholar
  59. Zaremba S. & Keen J M. (1983). Assembly polypeptides from coated vesicles mediate reassembly of unique clathrin coats. J. Cell. Biol. 97: 1339–1347.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Christian Huet
    • 1
  • Odile Godefroy
    • 1
  • Cristina Ibarra
    • 2
  • Alice Dautry-Varsat
    • 3
  • Daniel Louvard
    • 1
  1. 1.Unité de Biologie des Membranes, Département de Biologie MoléculaireInstitut PasteurParis Cedex-15France
  2. 2.Département de BiologieC.E.N. SaclayGif sur YvetteFrance
  3. 3.Unité de Biologie Somatique, Département d’ImmunologieInstitut PasteurParis Cedex-15France

Personalised recommendations