Pharmaceutical Applications of Cell Culture: An Overview

  • Ronald T. Borchardt
  • Ismael J. Hidalgo
  • Kathleen M. Hillgren
  • Ming Hu
Part of the NATO ASI Series book series (NSSA, volume 218)


A major challenge confronting the pharmaceutical scientist in the future will be the selective and efficient delivery of the next generation of drugs. Many of these drugs will be discovered by synthetic chemists through rational drug design or by molecular biologists through recombinant DNA technology. In rational drug design, drug candidates are developed with molecular characteristics that permit optimal interaction with the specific macromolecules (e.g., receptor, enzyme) which mediates the desirable therapeutic effect.1 However, rational drug design does not necessarily mean rational drug delivery, which strives to incorporate into a molecule the molecular properties necessary for the optimal delivery between the point of administration and the final target site in the body.2


Cell Culture System Microporous Membrane Pharmaceutical Scientist Biological Barrier Rational Drug Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.R. Marshall, Computer-aided drug design, Ann. Rev. Pharmacol. Toxicol. 27: 193–213 (1987).CrossRefGoogle Scholar
  2. 2.
    E. Tomlinson, Theory and practice of site-specific drug delivery, Adv. Drug Del. Rev. 1: 87–198 (1987).CrossRefGoogle Scholar
  3. 3.
    D. Blohm, C. Bollschweiler, and H. Hillen, Protein pharmaceuticals, Angew. Chem. Int. Ed. Eng., 27: 207–225 (1988).CrossRefGoogle Scholar
  4. 4.
    V.H.L. Lee., ed., “Peptide and Protein Drug Delivery: Fundamentals and Technology,” Marcel Dekker, New York (1990).Google Scholar
  5. 5.
    G. Wilson, S.S. Davis, and L. Illum, eds., “Pharmaceutical Applications of Cell and Tissue Culture,” Plenum, New York (1990).Google Scholar
  6. 6.
    J. Madara and J.S. Trier, Functional morphology of the mucosa of the small intestine, in: “Physiology of the Gastrointestinal Tract,” L.R. Johnson, ed., Vol. 2, pp. 1209–1249, Raven, New York (1987).Google Scholar
  7. 7.
    L. Lichtenberger, L.R. Miller, D.N. Erwin, and L.R. Johnson, Effect of pentagastrin on adult rat duodenal cells in culture, Gastroenterology 65: 242–251 (1973).PubMedGoogle Scholar
  8. 8.
    F. Raul, M. Kedinger, P. Simon, J. Grenier, and K. Haffen, Behaviour of isolated rat intestinal cells maintained in suspension or monolayer cultures, Biol. Cell 33: 163–168 (1978).Google Scholar
  9. 9.
    A. Quaroni, J. Wands, R.L. Trelstad, and K.J. Isselbacher, Epithelioid cell cultures from rat small intestine. Characterization by morphologic and immunologic criteria, J. Cell Biol. 80: 248–265 (1979).PubMedCrossRefGoogle Scholar
  10. 10.
    Y.S. Chung, I.S. Song, R.H. Erickson, M.H. Sleisenger, and Y.S. Kim, Effect of growth and sodium butyrate on brush border membraneassociated hydrolases in human colorectal cancer cell lines, Cancer Res. 45: 2976–2982 (1985).PubMedGoogle Scholar
  11. 11.
    J. Fogh and G. Trempe, New human tumor cell lines, in: “Human Tumor Cells in vitro,” J. Fogh, ed., pp. 115–141, Plenum, New York (1975).Google Scholar
  12. 12.
    J. Fogh, J.M. Fogh, and T. Orfeo, One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice, J. Natl. Cancer Inst. 59: 221–225 (1977).PubMedGoogle Scholar
  13. 13.
    M. Pinto, M.-D. Appay, P. Simon-Assmann, G. Chevalier, N. Dracopoli, J. Fogh, and A. Zweibaum, Enterocytic differentiation of cultured human colon cancer cells by replacement of glucose by galactose in the medium, Biol. Cell 44: 193–196 (1982).Google Scholar
  14. 14.
    M. Pinto, S. Robine-Leon, M.-D. Appay, M. Kedinger, N. Triadou, E. Dussaulx, B. Lacroix, P. Simon-Assmann, K. Haffen, J. Fogh, and A. Zweibaum, Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture, Biol. Cell 47: 323–330 (1983).Google Scholar
  15. 15.
    M. Rousset, The human colon carcinoma cell lines HT-29 and Caco-2: two in vitro models for the study of intestinal differentiation, Biochimie 68: 1035–1040 (1986).PubMedCrossRefGoogle Scholar
  16. 16.
    A. Zweibaum, N. Triadou, M. Kedinger, C. Augeron, S. Robine-Leon, M. Pinto, M. Rousset, and K. Haffen, Sucrase-isomaltase: A marker of foetal and malignant epithelial cells of the human colon, Int. J. Cancer 32: 407–412 (1983).PubMedCrossRefGoogle Scholar
  17. 17.
    A. Zweibaum, M. Pinto, G. Chevalier, E. Dussaulx, N. Triadou, B. Lacroix, K. Haffen, J.-L. Brun, and M. Rousset, Enterocytic differentiation of a subpopulation of the human colon tumor cell line HT-29 selected for growth in sugar-free medium and its inhibition by glucose, J. Cell Physiol. 122: 21–29 (1985).PubMedCrossRefGoogle Scholar
  18. 18.
    M. Rousset, M. Laburthe, M. Pinto, G. Chevalier, C. Rouyer-Fesard, E. Dussaulx, G. Trugnan, N. Boige, J.-L. Brun, and A. Zweibaum, Enterocytic differentiation and glucose utilization in the human colon tumor cell line Caco-2: modulation by forskolin, J. Cell Physiol. 123: 377–385 (1985).PubMedCrossRefGoogle Scholar
  19. 19.
    E. Grasset, M. Pinto, E. Dussaulx, A. Zweibaum, and J.-F. Desjeux, Epithelial properties of the human colonic carcinoma cell line Caco-2: Electrical parameters, Am. J. Phvsiol. 247: C260–C267 (1984).Google Scholar
  20. 20.
    A. Le Bivic, M. Hirn, and H. Reggio, HT-29 cells are an in vitro model for the generation of cell polarity in epithelia during embryonic differentiation, Proc. Natl. Acad. Sci. USA 85: 136–140 (1988).PubMedCrossRefGoogle Scholar
  21. 21.
    I.J. Hidalgo, T.J. Raub, and R.T. Borchardt, Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability, Gastroenterology 96: 736–749 (1989).PubMedGoogle Scholar
  22. 22.
    T.E. Phillips, T.L. Phillips, and M. Neutra, Macromolecules can pass through occluding junctions of rat ileal epithelium during cholinergic stimulation, Cell Tissue Res. 247: 547–554 (1987).PubMedCrossRefGoogle Scholar
  23. 23.
    M.V. Shah, K.L. Audus, and R.T. Borchardt, The application of bovine brain microvessel endothelial-cell monolayers grown onto polycarbonate membranes in vitro to estimate the potential permeability of solutes through the blood brain barrier, Pharm. Res. 6: 624–627 (1984).CrossRefGoogle Scholar
  24. 24.
    I.J. Hidalgo, K.M. Hillgren, G.M. Grass, and R.T. Borchardt, Characterization of the aqueous boundary layer in Caco-2 cells using a novel diffusion cell, Pharm. Res. 6: 000 (Abstr.) (1989).Google Scholar
  25. 25.
    C.-H. Von Bonsdorff, S.D. Fuller, and K. Simons, Apical and basolateral endocytosis in Madin-Darby canine kidney (MDCK) cells grown on nitrocellulose filters, EMBO J. 4: 2781–2792 (1985).Google Scholar
  26. 26.
    I.J. Hidalgo and R.T. Borchardt, Amino acid transport in a novel model system of the intestinal epithelium (Caco-2 cells), Pharm. Res. 5: S110 1988) (Abstr.).Google Scholar
  27. 27.
    M. Hu and R.T. Borchardt, Effect of pH and glucose on L-phenylalanine transport across an intestinal epithelial cell model system (Caco-2), Pharm. Res. 6: 000 (Abstr.) (1989).CrossRefGoogle Scholar
  28. 28.
    I.J. Hidalgo and R.T. Borchardt, Transport of taurocholic acid in an intestinal epithelial model system (Caco-2 cell), Pharm. Res. 5: S110 (Abstr.) (1989).Google Scholar
  29. 29.
    I.J. Hidalgo, A. Kato, and R.T. Borchardt, Binding of epidermal growth factor by human colon carcinoma cell (Caco-2) monolayers, Biochem. Biophvs. Res. Commun. 160: 317–324 (1989).CrossRefGoogle Scholar
  30. 30.
    T.E. Hughes, W.V. Sasak, J.M. Ordovas, T.M. Forte, S. Lamon-Fava, and E.J. Schaefer, A novel cell line (Caco-2) for the study of intestinal lipoprotein synthesis, J. Biol. Chem. 262: 3762–3767 (1987).PubMedGoogle Scholar
  31. 31.
    M.G. Traber, H.J. Kayden, and M.J. Rindler, Polarized secretion of newly synthesized lipoproteins by the Caco-2 human intestinal cell line, J. Lipid Res. 28: 1350–1363 (1987).PubMedGoogle Scholar
  32. 32.
    A. Dantzig and L. Bergin, Carrier-mediated uptake of cephalexin in human intestinal cells, Biochem. Biophvs. Res. Commun. 155: 1082–1087 (1988).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Ronald T. Borchardt
    • 1
  • Ismael J. Hidalgo
    • 1
  • Kathleen M. Hillgren
    • 1
  • Ming Hu
    • 1
  1. 1.Department of Pharmaceutical ChemistryThe University of KansasLawrenceUSA

Personalised recommendations