Advertisement

Immunostimulating Complex (ISCOM)

  • B. Morein
  • K. Lövgren
  • S. Höglund
Part of the NATO ASI Series book series (NSSA, volume 179)

Abstract

For almost two centuries vaccines have been based on whole micro-organisms, killed (inactivated) or attenuated. With increasing knowledge of the molecular composition of pathogenic micro-organisms and the function of different molecules, protective antigens also became identified. In spite of the fact that some of the early killed whole micro-organism vaccines proved to be effective there are several reasons why vaccines in the future should be formulated based on defined antigens, e.g.: (i) To avoid hazards due to toxicity or to genetic material which may cause replication, or as regards retroviruses the integration of viral genes into the infected hostcell genome. (ii) To limit the number of antigens in a vaccine in order to decrease the risk for induction autoimmune or allergic reactions. (iii) Further, reorganization of the prospective protective antigens may break a strategy for survival of the pathogen in the “hostile” immunological environment of the infected host.

Keywords

Respiratory Syncytial Virus Envelope Protein Measle Virus Bovine Leukemia Virus Subunit Vaccine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almeida, J.D., Brand, D.C., Edwards, D.C. and Heath, T.D., 1975, Formation of virosomes from influenza subunits and liposomes, Lancet 2: 899.PubMedCrossRefGoogle Scholar
  2. Bradford, M.M., 1976, A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principal of protein dye binding, Analyt. Biochem., 72: 249.CrossRefGoogle Scholar
  3. Coutelier, J-P., van der Logt, J.T.M., Heessen, F.W.A., Warnier, G. and van Snick, J., 1987, IgG2a restriction of murine antibodies elicited by viral antigens, J.Exp.Med., 165: 64.PubMedCrossRefGoogle Scholar
  4. Dalsgaard, K., 1978, A study of the isolation and characterization of the saponin Quil A. Evaluation of its adjuvant activity with special reference to the application in the vaccination of cattle against foot and mouth disease, Acta Vet. Scand. Suppl., 69: 1.Google Scholar
  5. De Vries, P., Van Binnendijk, R.S., Van der Marel, P., Van Wesel, A.L., Voorma, H.O., Sundquist, B., Uyt de Haag, F.G.C.M. and Osterhaus, A.D.M.E., 1988, Measles virus fusion protein presented in an immunestimulating complex (iscom) induces haemolysis-inhibiting and fusion inhibiting antibodies, virus-specific T cells and protection in mice, J.Gen.Virol., 69: 549.PubMedCrossRefGoogle Scholar
  6. Helenius, A., Fries, E. and Kartenbeck, J., 1977, Reconstitution of Semliki Forest virus membrane, J.Cell.Biol., 75: 866.PubMedCrossRefGoogle Scholar
  7. Höglund, S., Dalsgaard, K., Lövgren, K., Sundquist, B., Osterhaus, A. and Morein, B., Iscoms and immunostimulation with viral antigens, Subcell. Biochem., in press.Google Scholar
  8. Höglund, S., Ozel, M., Gelderblom, H., Akerblom, L., Villacres, M. and Morein, B., 1988, A construct of iscom of HIV antigens: structural and immunological function, Proc. Int. Conf. AIDS, Stockholm.Google Scholar
  9. Jones, P.D., Tha Hla, R., Morein, B., Lövgren, K. and Ada, G.L., 1988, Cellular immune response in the murine lung to local immunization with influenza A virus glycoproteins in micelles and iscom, Scand.J. Immunol., 27: 645.PubMedCrossRefGoogle Scholar
  10. Luukkonen, A., Gahmberg, C.G. and Renkonen, O., 1977, Surface labelling of Semliki forest virus glycoprotein using galactose oxidase, Virology, 76: 55.PubMedCrossRefGoogle Scholar
  11. Lövgren, K., Lindmark, J., Pipkorn, R. and Morein, B., 1987, Antigenic presentation of small molecules and peptides conjugated to a preformed iscom as carrier, J. Immunol.Meth., 98: 137.CrossRefGoogle Scholar
  12. Lövgren, K. and Morein, B., 1988, The requirement of lipids for the formation of immunostimulating complexes (iscoms), Biotechnol. Appl. Biochem., 10: 161.PubMedGoogle Scholar
  13. Lövgren, K., 1988, The serum antibody response distributed in subclasses and isotypes after intranasal and subcutaneous immunization with influenza virus immunostimulating complexes, Scand.J. Immunol., 27: 241.PubMedCrossRefGoogle Scholar
  14. McEwen, C.R., 1967, Tables for estimating sedimentation through linear concentration gradients of sucrose solution, Anal.Biochem., 20: 114.PubMedCrossRefGoogle Scholar
  15. Merza, M.S., Linne, T., Hoglund, S., Morein, B., Portetelle, D. and Burny, A., Bovine leukemia virus iscoms: biochemical characterization, Vaccine, in press.Google Scholar
  16. Morein, B., Helenius, A., Simons, K., Pettersson, R., Kääriäinen, L. and Schirrmacher, V., 1978, Effective subunit vaccines against enveloped animal virus, Nature, 276: 715.PubMedCrossRefGoogle Scholar
  17. Morein, B., Sharp, M., Sundquist, B. and Simons, K., 1983, Protein subunit vaccines of Parainfluenza type 3 virus: Immunogenic effect in lambs and mice, J. gen. Virol., 64: 1557.PubMedCrossRefGoogle Scholar
  18. Morein, B., Sundquist, B., Höglund, S., Dalsgaard, K. and Osterhaus, A., 1984, Iscom, a novel structure for antigenic presentation of membrane proteins from enveloped viruses, Nature, 308: 457.PubMedCrossRefGoogle Scholar
  19. Morein, B. and Simons, K., 1985, Subunit vaccines against enveloped viruses: virosomes, micelles and other protein complexes, Vaccine, 3: 83.PubMedCrossRefGoogle Scholar
  20. Morein, B., Lövgren, K., Höglund, S. and Sundquist, B., 1987, The iscom: an immunostimulating complex, Immunol.Today, 8: 333.CrossRefGoogle Scholar
  21. Morgan, A.J., Finerty, S., Lövgren, K., Scullion, F.T. and Morein, B., 1988, Prevention of Epstein-Barr (EB) virus induced lymphoma in cottontop tamarins by vaccination with the EB virus envelope glycoprotein gp340 incorporated into immune-stimulating complexes, J. gen. Virol., 69: 2093.PubMedCrossRefGoogle Scholar
  22. Speijers, G.J.A., Danse, L.H.J.C., Beuvery, J.J.T.W., Strik, A. and Vos, J.G., 1987, Local reactions of the Saponin Quil A and a Quil A containing iscom measles vaccine after intramuscular injection of rats: a comparison with the effect of DPT-polio vaccine, Fund.Appl. Toxicol., 10: 425.CrossRefGoogle Scholar
  23. Sundquist, B., Lövgren, K., Höglund, S. and Morein, B., 1988, Influenza virus iscoms: Biochemical characterization, Vaccine, 6: 44.PubMedCrossRefGoogle Scholar
  24. Sundquist, B., Dalsgaard, K. and Morein, B., 1983, Assay of detergents by rocket electrophoresis in agarose gels containing red blood cells: “rocket hemolysis”, Biochem.Biophys.Res.Comm., 114: 699.PubMedCrossRefGoogle Scholar
  25. Trudel, M., Nadon, F., Séguin, C., Simard, C. and Lussier, G., Experimental polyvalent iscoms subunit vaccine based on the fusion protein induces antibodies that neutralize human and bovine respiratory syncytial virus, Vaccine, in press.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • B. Morein
    • 1
  • K. Lövgren
    • 2
  • S. Höglund
    • 3
  1. 1.Department of Microbiology, Section of Virology, BiomedicumSwedish University of Agricultural Sciences, College of Veterinary Medicine23 UppsalaSweden
  2. 2.Department of VirologyNational Veterinary Institute Biomedicum23 UppsalaSweden
  3. 3.Institute of Biochemistry, Biomedicum23 UppsalaSweden

Personalised recommendations