Lattices, Demons and the Microcanonical Ensemble

  • Gyan Bhanot
Part of the NATO ASI Series book series (NSSB, volume 115)


A method proposed recently for computer simulation of dynamical systems is investigated in detail for the Ising model.


Boolean Function Ising Model Canonical Ensemble MICROCANONICAL Ensemble Ising System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Creutz, Phys. Rev. Lett. 50 (1983) 1411.MathSciNetADSCrossRefGoogle Scholar
  2. D. Callaway and A. Rahman, Phys. Rev. Lett. 49 (1982) 613, and ibid., Argonne preprint, ANL-HEP-PR-83, 04, Jan., 1983.ADSCrossRefGoogle Scholar
  3. 2.
    For more detail see “Microcanonical simulation of Ising systems,” G. Bhanot, M. Creutz and H. Neuberger, IAS preprint, Dec, 1983, to appear in Nucl. Phys. B[FS].Google Scholar
  4. 3.
    L. Jacobs and C. Rebbi, “Multi-spin Coding: A very efficient technique for Monte Carlo simulations of Spin Systems,” J. of Comp. Phys. 1 (1981) 203.ADSCrossRefGoogle Scholar
  5. 4.
    U. Heller and N. Seiberg, Phys. Rev. D27 (1982) 2980.ADSGoogle Scholar
  6. 5.
    R. B. Pearson, J. L. Richardson and D. Toussaint, “A special purpose machine for Monte Carlo simulation,” Santa Barbara preprint, NSF-ITP-81-139, Jan., 1982; ibid., “A fast processor for Monte Carlo simulation,” Santa Barbara preprint NSF-ITP-82-98, Oct., 1982.Google Scholar
  7. 6.
    B. M. McCoy and T. T. Wu, “The two dimensional Ising model,” Harvard Univ. Press, Cambridge, Mass., 1973.MATHGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Gyan Bhanot
    • 1
  1. 1.The Institute for Advanced StudyPrincetonUSA

Personalised recommendations