Exact Renormalization Group for Gauge Theories

  • Tadeusz Balaban
  • John Imbrie
  • Arthur Jaffe
Part of the NATO ASI Series book series (NSSB, volume 115)


Renormalization group ideas have been extremely important to progress in our understanding of gauge field theory. Particularly the idea of asymptotic freedom leads us to hope that nonabelian gauge theories exist in four dimensions and yet are capable of producing the physics we observe — quarks confined in meson and baryon states. For a thorough understanding of the ultraviolet behavior of gauge theories, we need to go beyond the approximation of the theory at some momentum scale by theories with one or a small number of coupling constants. In other words, we need a method of performing exact renormalization group transformations, keeping control of higher order effects, nonlocal effects, and large field effects that are usually ignored.


Gauge Theory Gauge Transformation Effective Action Gauge Field Background Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Glimm, A. Jaffe, Positivity of the ϕ4 3 Hamiltonian, Fortschritte der Physik 21:327 (1973).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    G. Benfatto, M. Cassandro, G. Gallavotti, F. Nicoló, E. Olivieri, E. Presutti, E. Scacciatelli, Ultraviolet stability in Euclidean scalar field theories, Commun. Math. Phys. 71:95 (1980).ADSMATHCrossRefGoogle Scholar
  3. 3.
    J. Glimm, A. Jaffe, “Quantum Physics; A Functional Integral Point of View,” Springer-Verlag, New York-Heidelberg-Berlin (1981).MATHGoogle Scholar
  4. 4.
    K. Osterwalder, R. Schrader, Axioms for Euclidean Green’s functions, I and II, Commun. Math. Phys. 31:83 (1973) and 42:281 (1975).MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    D. Brydges, J. Fröhlich, E. Seiler, On the construction of quantized gauge fields. I. General results, Ann. Phys. 121:227 (1979), II. Convergence of the lattice approximation, Commun. Math. Phys. 71:159 (1980), III. The twodimensional abelian Higgs model without cutoffs, Commun. Math. Phys. 79:353 (1981).ADSCrossRefGoogle Scholar
  6. 6.
    D. Weingarten, J. Challifour, Continuum limit of QED2 on a lattice, Ann. Phys. 123:61 (1971).MathSciNetADSGoogle Scholar
  7. D. Weingarten, Continuum limit of QED2 on a lattice, II, Ann. Phys. 126:154 (1980).MathSciNetADSCrossRefGoogle Scholar
  8. 7.
    K. Ito, Construction of Euclidean (QED)2 via lattice gauge theory. Boundary conditions and volume dependence, Commun. Math. Phys. 83:537 (1982).ADSCrossRefGoogle Scholar
  9. 8.
    E. Seiler, “Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics,” Lecture Notes in Physics, vol. 159, Springer-Verlag, Berlin-Heidelberg-New York (1982).Google Scholar
  10. 9.
    T. Balaban, (Higgs)2,3 quantum fields in a finite volume. I. A lower bound, Commun. Math. Phys. 85:603 (1983). II. An upper bound, Commun. Math. Phys. 86:555 (1982). III. Renormalization, Commun. Math. Phys. 88:411 (1983). Regularity and decay of lattice Green’s functions, 89:571 (1983).MathSciNetADSCrossRefGoogle Scholar
  11. 10.
    T. Balaban, Propagators and renormalization transformations for lattice gauge theories, I., Harvard University preprint HUTMP-B139.Google Scholar
  12. 11.
    T. Balaban, Renormalization group approach to nonabelian gauge field theories, in: “Mathematical Problems in Theoretical Physics, Proceedings of the VII-th International Conference on Mathematical Physics, Boulder, 1983,” Lecture Notes in Physics, Springer-Verlag, Berlin-Heidelberg-New York, to appear.Google Scholar
  13. 12.
    T. Balaban, D. Brydges, J. Imbrie, A. Jaffe, The mass gap the Higgs models on a unit lattice. Harvard University preprint.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Tadeusz Balaban
    • 1
  • John Imbrie
    • 1
  • Arthur Jaffe
    • 1
  1. 1.Lyman Laboratory of PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations