Advertisement

Morse Theory and Monopoles: Topology in Long Range Forces

  • Clifford Henry Taubes
Part of the NATO ASI Series book series (NSSB, volume 115)

Abstract

Consider the t’Hooft-Polyakov monopole [1]. This is a static, finite energy solution to the evolution equations of a non-Abelian Higgs model with adjoint Higgs. For simplicity, take G = SU(2), but one could do a similar analysis for any group.

Keywords

Gauge Transformation Convergent Subsequence Morse Theory Higgs Field Smooth Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. ’t-Hooft, Nucl, Phys. B79: 276 (1974), andMathSciNetADSCrossRefGoogle Scholar
  2. A.M. Polyakov, JETP Lett. 20: 194 (1974).ADSGoogle Scholar
  3. 2.
    E.B. Bogomol’nyi, Sov. J. Nucl. Phys. 24: 449 (1976).MathSciNetGoogle Scholar
  4. 3.
    N.S. Manton, Nucl, Phys. B135: 319 (1978).ADSCrossRefGoogle Scholar
  5. 4.
    C.H. Taubes, Comm. Math. Phys. 86: 257 (1982); and Comm. Math. Phys. 86: 299 (1982).MathSciNetADSMATHCrossRefGoogle Scholar
  6. 5.
    D. Groisser, “SU(2) Yang-Mills-Higgs theory on ℝ3”, Harvard University preprint.Google Scholar
  7. 6.
    R. Palais, Proc. Symp. Pure Math. 15: 185 (1970); Amer. Math. Soc, Providence, RI.MathSciNetGoogle Scholar
  8. 7.
    R. Palais, Topology 5: 115 (1966).MathSciNetMATHCrossRefGoogle Scholar
  9. 8.
    M. Berger, Nonlinearity and Functional Analysis, Academic Press, New York (1977); andMATHGoogle Scholar
  10. L. Ljusternik, Topology of the Calculus of Variations in the Large, (Amer. Math. Soc. Transl. 16), Amer. Math. Soc., Providence, RI (1966).Google Scholar
  11. 9.
    D. Groisser, “Integrability of the monopole number in SU(2) Yang-Mills-Higgs theory on ℝ3”, MSRI Berkeley preprint, (1983).Google Scholar
  12. 10.
    K.K. Uhlenbeck, Comm. Math. Phys. 83:: 31 (1981).MathSciNetADSCrossRefGoogle Scholar
  13. 11.
    A. Jaffe and C.H. Taubes, Vortices and Monopoles, Birkhauser, Boston (1980).MATHGoogle Scholar
  14. 12.
    C.H. Taubes, “On the Yang-Mills-Higgs equations,” Bull. AMS, to appear.Google Scholar
  15. 13.
    C.H. Taubes, in preparation.Google Scholar
  16. 14.
    C.H. Taubes, “Path connected Yang-Mills moduli spaces,” Univ. of Calif., Berkeley, preprint (1983).Google Scholar
  17. 15.
    D. Freed, M. Freedman and K.K. Uhlenbeck, “Gauge theories and four manifolds,” MSRI, Berkeley preprint, (1983).Google Scholar
  18. 16.
    R. Gompf, J. Diff. Geo. 18: 317 (1983).MathSciNetMATHGoogle Scholar
  19. 17.
    S.K. Donaldson, J. Diff. Geo. 18: 279 (1983).MathSciNetMATHGoogle Scholar
  20. 18.
    R. Kirby, private communication.Google Scholar
  21. 19.
    E. Moise, Ann. of Math. 54: 506 (1951); 55: 172 (1952); 55: 203 (1952); 55, 215 (1952); 56: 96 (1952). AndMathSciNetMATHCrossRefGoogle Scholar
  22. J. Stallings, Proc. Camb. Phil. soc. 58: 481 (1962).MathSciNetADSMATHCrossRefGoogle Scholar
  23. 20.
    M. Freedman, Ann. of Math. 110: 177 (1979).MathSciNetMATHCrossRefGoogle Scholar
  24. 21.
    M. Freedman, J. Diff. Geo. 17: 357 (1982).MATHGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Clifford Henry Taubes
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations