Advertisement

Dirac Monopoles, from d = 2 to d = 5, Lecture I

  • F. Alexander Bais
Part of the NATO ASI Series book series (NSSB, volume 115)

Abstract

We review abelian (Dirac type) monopole solutions in an increasing number of dimensions. In doing so, we tie together three remarkable ideas, all of which date back to the twenties and thirties; the Dirac monopole (1931), the Hopf map (bundle) (1931) and the Kaluza-Klein dimensional reduction (compactification) scheme. Starting from Maxwell’s equations on the two sphere, we arrive via euclidean selfdual Einstein spaces, at the recently discovered Kaluza-Klein monopoles. These are regular time independent solutions to the five-dimensional theory of general relativity corresponding to monopoles in the Kaluza-Klein frame-work. Various properties of these solutions are briefly discussed.

Keywords

Dirac Equation Dirac Operator Zero Mode Anomalous Magnetic Moment Spin Connection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.A.M. Dirac, Proc. Roy. Soc. A133 (1931) 60.ADSGoogle Scholar
  2. 2.
    H. Hopf, Math. Ann. 104 (1931) 637.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Th. Kaluza, Sitzungsber. Preuss. Akad. Wiss., Berlin, Math. Phys. K1 (1921) 966.Google Scholar
  4. O. Klein, Z. Phys. 37. (1926) 895.ADSCrossRefGoogle Scholar
  5. 4.
    A. Trautman, Int. Journ. Theor. Phys. 16 (1977) 561.CrossRefGoogle Scholar
  6. 5.
    T. Eguchi, P.B. Gilkey and A.J. Hanson, Phys. Rep. 66 (1980) 215.MathSciNetADSCrossRefGoogle Scholar
  7. 6.
    G.W. Gibbons and S.W. Hawking, Phys. Lett. 78B (1978) 430.ADSGoogle Scholar
  8. 7.
    R.D. Sorkin, Phys. Rev. Lett. 51 (1983) 87.MathSciNetADSCrossRefGoogle Scholar
  9. 8.
    D.J. Gross and M.J. Perry, Nucl. Phys. B226 (1983) 29.MathSciNetADSCrossRefGoogle Scholar
  10. 9.
    T.T. Wu and C.N. Yang, Phys. Rev. D12 (1975) 3845.ADSGoogle Scholar
  11. 10.
    A. Lichnerowitz, C.R. Acad. Sci. Ser. A257 (1963) 7.Google Scholar
  12. 11.
    For example: L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields, Pergamon Press (1971).Google Scholar
  13. 12.
    P. Batenburg, private communication (to be published).Google Scholar
  14. 13.
    Y. Kazama, C.N. Yang and A.S. Goldhaber, Phys. Rev. D15 (1977) 2287ADSGoogle Scholar
  15. Y. Kazama and C.N. Yang, Phys. Rev. D15 (1977) 2300.ADSGoogle Scholar
  16. 14.
    P. Freund and M. Rubin, Phys. Lett. 97B (1980) 233.MathSciNetADSGoogle Scholar
  17. 15.
    P. van Baal, F.A. Bais and P. van Nieuwenhuizen, Nucl. Phys. B (to be published); P. van Baal and F.A. Bais, Phys. Lett. (to be published).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • F. Alexander Bais
    • 1
  1. 1.Institute for Theoretical PhysicsUtrechtThe Netherlands

Personalised recommendations