Skip to main content

An Introduction to Gravitational Anomalies

  • Chapter
Progress in Gauge Field Theory

Part of the book series: NATO ASI Series ((NSSB,volume 115))

Abstract

The study of anomalies in global and gauge currents in Quantum Field Theory has had a remarkable number of important applications during the 70’s. In the original version of the anomaly1 one considers a massless fermion triangle diagram with one axial current and two vector currents. Requiring the vector currents to be conserved, one finds that the axial current is not conserved therefore leading to a breakdown of chiral symmetry in the presence of gauge fields coupled to conserved vector currents. This breakdown of chiral symmetry led to the understanding of π° decay and to the resolution of the u (1) problem.2 The anomaly has also been instrumental in posing constraints to insure the mathematical consistency of gauge theories coupled to chiral currents. If one considers a theory with gauge fields coupled for instance to left handed currents, one must look at a fermion triangle diagram with V-A currents at each vertex. Again, this diagram is anomalous, and unless the anomalies cancel when summing over all the fermion species running around the loop, one finds that the V-A currents are not conserved, implying that gauge invariance is broken and thus the anomaly renders the theory inconsistent. The anomaly cancellation condition has proven to be very useful in constraining the particle content of unified gauge theories.3 More recently4, the anomaly has also been shown to be useful in analyzing the spectrum of massless fermions in confining theories. In the context of low energy chiral theories, the Wess-Zumino lagrangian5 has recently played a central role in showing that the soliton solutions of certain models6 can be identified with baryons.7 This recent development has in turn shed new light into our understanding of chiral anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Adler, Phys. Rev. 177 (1969) 2426, and in “Lectures in Elementary Particles and Quantum Field Theory”, ed. S. Deser et al. (M.I.T. Press, 1970)

    Article  ADS  Google Scholar 

  2. J. Bell and R. Jackiw, Nuovo Cimento 60A (1969) 47; R. Jackiw, in “Lectures on Current Algebra and its Applications” (Princeton University Press, 1972)

    ADS  Google Scholar 

  3. S. L. Adler and W. Bardeen, Phys. Rev. 182 (1969) 1517

    Article  ADS  Google Scholar 

  4. W. A. Bardeen, Phys. Rev. 184 (1969) 1848

    Article  ADS  Google Scholar 

  5. R. W. Brown, C. C. Shi, and B. L. Young, Phys. Rev. 186 (1969) 1491

    Article  ADS  Google Scholar 

  6. J. Wess and B. Zumino, Phys. Lett. 37B (1971) 95

    MathSciNet  ADS  Google Scholar 

  7. A. Zee, Phys. Rev. Lett. 29 (1972) 1198.

    Article  ADS  Google Scholar 

  8. J. Steinberg, Phys. Rev. 76 (1949) 1180

    Article  ADS  Google Scholar 

  9. J. Schwinger, Phys. Rev. 82 (1951) 664

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. L. Rosenberg, Phys. Rev. 129 (1963) 7786

    Google Scholar 

  11. R. Jackiw and K. Johnson, Phys. Rev. 182 (1969) 1459

    Article  ADS  Google Scholar 

  12. S. Adler and D. G. Boulware, Phys. Rev. 184 (1969), 1740

    Article  ADS  Google Scholar 

  13. S. L. Adler, B. W. Lee, S. B. Treiman, and A. Zee, Phys. Rev. D4 (1971) 3497

    ADS  Google Scholar 

  14. R. Aviv and A. Zee, Phys. Rev. D5 (1972) 2372

    ADS  Google Scholar 

  15. M. V. Terentiev, J.E.T.P. Letters 14 (1971) 140

    Google Scholar 

  16. A. M. Belevin, A. M. Polyakov, A. S. Schwarz and Yn. S. Tyupkin, Phys. Lett. 59B (1975) 85

    ADS  Google Scholar 

  17. G. ’t Hooft, Phys. Rev. Lett. 37. (1976) 8, Phys. Rev. D14 (1976) 3432

    Article  ADS  Google Scholar 

  18. C. Callan, R. Dashen, and D. J. Gross, Phys. Lett. 63B (1976) 334

    ADS  Google Scholar 

  19. R. Jackiw and C. Rebbi, Phys. Rev. Lett. 37 (1976) 172.

    Article  ADS  Google Scholar 

  20. P. J. Gross and R. Jackiw, Phys. Rev. D6 (1972) 477

    ADS  Google Scholar 

  21. C. Bouchiat, J. Iliopoulos and Ph. Meyer, Phys. Lett. 38B (1972) 519

    ADS  Google Scholar 

  22. H. Georgi and S. L. Glashow, Phys. Rev. D6 (1972) 429.

    ADS  Google Scholar 

  23. G. ’t Hooft, in “Recent Developments in Gauge Theories”, G. ’t Hooft et al. eds. (Plenum Press,##New York, 1980)

    Google Scholar 

  24. A. A. Ansel’m, J.E.T.P. Lett. 32: (1980) 138

    ADS  Google Scholar 

  25. A. Zee, Phys. Lett. 95B (1980) 290

    ADS  Google Scholar 

  26. Y. Frishman, A. Schwimmer, T. Banks, and S. S. Yankielowicz, Nucl. Phys. B177 (1981) 157

    Article  ADS  Google Scholar 

  27. S. Colemand and B. Grossman, Nucl. Phys. B203 (1982) 205

    Article  ADS  Google Scholar 

  28. G. R. Farrar, Phys. Lett. 96B (1980) 273

    ADS  Google Scholar 

  29. S. Weinberg, Phys. Lett. 102B (1981) 401

    ADS  Google Scholar 

  30. C. H. Albright, Phys. Rev. D24 (1981) 1969

    ADS  Google Scholar 

  31. I. Bars, Phys. Lett. 109B (1982) 73

    ADS  Google Scholar 

  32. T. Banks, S. Yankielowicz, and A. Schwimmer, Phys. Lett. 96B (1980) 67

    MathSciNet  ADS  Google Scholar 

  33. A. Schwimmer, Nucl. Phys. B198 (1982) 269.

    Article  MathSciNet  ADS  Google Scholar 

  34. J. Wess and B. Zumino, Phys. Lett. 37B (1971) 95.

    MathSciNet  ADS  Google Scholar 

  35. J. H. R. Skyrme, Proc. Roy. Soc. (London) A260 (1961) 127.

    MathSciNet  ADS  Google Scholar 

  36. A. D. Balachandran, Y. P. Nair, S. G. Raicev, and A. Stern, Phys. Rev. Lett. 49 (1982) 1182 and Syracuse University Preprint (1982). E. Witten, “Global Aspects of Current Algebra” and Current Algebra, Baryons and Quark Confinement”, Princeton Preprints.

    Article  Google Scholar 

  37. P. H. Frampton and T. W. Kephart, Phys. Rev. Lett. 50 (1983) 1343, 1347; P. K. Townsend and G. Sierra (L.P.T.E.N.S. Preprint, 1983), Y. Matsuki and A. Hill (OSV Preprints, 1983).

    Article  ADS  Google Scholar 

  38. L. Alvarez-Gaume and E. Witten, Harvard Prepirnt HUTP-83/A039.

    Google Scholar 

  39. B. Zumino, W. Y. Shi and A. Zee (Univ. of Washington Preprint, 1983); B. Zumino, Lectures at the Les Houches Summer School, August 1983; R. Stora and B. Zumino, in preparation, and R. Stora, Lectures at Les Houches Summer School.

    Google Scholar 

  40. M. F. Atiyah and I. M. Singer, paper in preparation. Quillen in preparation.

    Google Scholar 

  41. O. Alvarez, I. M. Singer, and B. Zumino, in preparation, L. Alvarez-Gaumé and P. Ginsparg, in preparation.

    Google Scholar 

  42. R. Jackiw and C. Rebbi, Phys. Rev. D14 (1976) 517

    MathSciNet  ADS  Google Scholar 

  43. N. K. Nielsen, H. Römer, and B. Schroer, Phys. Lett. 70B (1977) 445.

    ADS  Google Scholar 

  44. R. Delbourgo and A. Salam, Phys. Lett. 40B (1972) 381

    ADS  Google Scholar 

  45. T. Eguchi and P. Freund, Phys. Rev. Lett. 37 (1976) 1251

    Article  MathSciNet  ADS  Google Scholar 

  46. S. W. Hawking and C. N. Pope, Nucl. Phys. B146 (1978) 381

    Article  MathSciNet  ADS  Google Scholar 

  47. M. J. Perry, Nucl. Phys. B143 (1978) 114

    Article  MathSciNet  ADS  Google Scholar 

  48. N. K. Nielsen, H. Römer, and B. Shroer, Nucl. Phys. B136 (1978) 475

    Article  ADS  Google Scholar 

  49. N. K. Nielsen, M. T. Grisaru, H. Römer, and P. V. Nieuwenhuisen, Nucl. Phys. B140 (1978) 477

    Article  ADS  Google Scholar 

  50. A. J. Hanson and H. Römer, Phys. Lett. 80B (1978) 58

    ADS  Google Scholar 

  51. R. Critchley, Phys. Lett. 78B (1978) 410

    ADS  Google Scholar 

  52. S. M. Christensen and M. J. Duff, Phys. Lett. 76B (1978) 571, Nucl. Phys. B154 (1979) 301

    ADS  Google Scholar 

  53. T. Eguchi, P. B. Gilkey, and A. J. Hanson, Phys. Rep. 66 (1980) 213.

    Article  MathSciNet  ADS  Google Scholar 

  54. K. Fujikawa, Phys. Rev. Lett. 42 (1979) 1195, 44 (1980) 1733, Phys. Rev. D21 (1980) 2848; D22 (1980) 1499 (E); D23 (1981) 2262; M. B. Einhorn and D. R. T. Jones, U.M.-Th. 83-3 Preprint

    Article  ADS  Google Scholar 

  55. A. Balachandran et al., Phys. Rev. D25 (1982) 2713.

    ADS  Google Scholar 

  56. E. Witten, Nucl. Phys. B202 (1982) 253.

    Article  MathSciNet  ADS  Google Scholar 

  57. T. Parker, unpublished and private communication.

    Google Scholar 

  58. D. Friedan and P. Windey, paper in preparation.

    Google Scholar 

  59. L. Alvarez-Gaume, Comm. Math. Phys. 90 (1983) 161.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. L. Alvarez-Gaume, Harvard Preprint HUTP-83/A035.

    Google Scholar 

  61. M. F. Atiyah and R. Bott, Ann. Math. 86 (1967) 374; 88 (1968) 451.

    Article  MathSciNet  MATH  Google Scholar 

  62. E. Getzler, Harvard Preprint.

    Google Scholar 

  63. T. Eguchi, P. B. Gilkey, and A. J. Hanson, Phys. Rep. 66 (1980) 213.

    Article  MathSciNet  ADS  Google Scholar 

  64. E. Witten, Phys. Lett. 117B (1982) 324.

    MathSciNet  ADS  Google Scholar 

  65. See, for example, H. Georgi, “Lie Algebras and Particle Physics”, (Benjamin Publ, 1981).

    Google Scholar 

  66. R. Stora and T. Schücker have outlined a general method to derive the Wess-Zumino consistency conditions in this case (Private communication).

    Google Scholar 

  67. J. S. Schwinger, Phys. Rev. 82 (1951) 664.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  68. P. K. Townsend, University of Texas (Austin) Preprint, 1983.

    Google Scholar 

  69. E. Cremmer, B. Julia, and J. Scherk, Phys. Lett. 76B (1978) 409

    ADS  Google Scholar 

  70. E. Cremmer and B. Julia, Nucl. Phys. B159 (1979) 141.

    Article  MathSciNet  ADS  Google Scholar 

  71. W. Nahm, Nucl. Phys. B135 (1978) 149

    Article  ADS  Google Scholar 

  72. M. B. Green and J. H. Schwartz, Phys. Lett. 109B (1982) 444, 122B (1983) 143

    ADS  Google Scholar 

  73. J. H. Schwartz and P. West, Phys. Lett. 126B (1983) 301; P. S. Howe and P. West, King’s College preprint (1983).

    ADS  Google Scholar 

  74. M. B. Green and J. H. Schwartz, Nucl. Phys. B181 502, B198 (1982) 252, 441; Phys. Lett. 109B (1982) 444

    ADS  Google Scholar 

  75. J. H. Schwartz, Phys. Reports 89 (1982) 223.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Alvarez-Gaumé, L. (1984). An Introduction to Gravitational Anomalies. In: ’t Hooft, G., Jaffe, A., Lehmann, H., Mitter, P.K., Singer, I.M., Stora, R. (eds) Progress in Gauge Field Theory. NATO ASI Series, vol 115. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0280-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0280-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0282-8

  • Online ISBN: 978-1-4757-0280-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics