Advertisement

Algebraic Structure and Topological Origin of Anomalies

  • Raymond Stora
Part of the NATO ASI Series book series (NSSB, volume 115)

Abstract

Although the subject of this seminar is not central in the present activity in gauge theories, mostly concerned with non perturbative aspects, a recent peak in the published literature on this old subject makes it worthwhile to review some of the methods which have emerged slowly since 1976.

Keywords

Gauge Group Algebraic Structure Ghost Number Gravitational Anomaly Yang Mill 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Steinberger, P.R. 76:1180 (1949)MATHCrossRefGoogle Scholar
  2. J. Schwinger, P.R. 82:664 (1951)MathSciNetMATHCrossRefGoogle Scholar
  3. S. Adler, P.R. 177:2426 (1969)CrossRefGoogle Scholar
  4. J.S. Bell, R. Jackiw, N.C. 60A:47 (1969).CrossRefGoogle Scholar
  5. 2.
    S. Adler, W.A. Bardeen, P.R. 182:1517 (1969)CrossRefGoogle Scholar
  6. W.A. Bardeen, P.R. 184:1848 (1969)CrossRefGoogle Scholar
  7. S. Adler, in Lectures on elementary particles and quantum field theory, 1970 Brandeis lectures M.I.T. Press, S. Deser, M. Grisaru, H. Pendleton Ed.Google Scholar
  8. 3.
    J. Wess, B. Zumino, P.L. 37B:95 (1971).MathSciNetGoogle Scholar
  9. 4.
    L. Alvarez Gaumé, E. Witten, Nucl. Phys. to appear.Google Scholar
  10. 5.
    This interpretation was already alluded to in: C. Becchi, A. Rouet, R, Stora, in “Renormalization Theory”, Erice 1975, G. Velo & A.S. Wightman Ed., NATO ASI Series Vol. C23 Reidel (1976). It is strengthened by the possibility to repeat the formal Faddeev Popov argument and express the “volume” of the gauge group (very likely not to exist, in the continuum), in terms of the Maurer Cartan form of that group (cf. J.M. Leinaas, K. Olaussen, P.L. 108B:199 (1982)). It has been spelled out most accurately byGoogle Scholar
  11. L. Bonora, P. Cotta-Ramusino, CM.P. 87:589 (1983). An alternative interpretation: a basis of generators for the dual (Lie g)* of (Lie g), cf.MathSciNetMATHGoogle Scholar
  12. D. Sullivan, IHES Pub. n° 47, p. 269 (1977).MATHCrossRefGoogle Scholar
  13. 6.
    H. Cartan in Colloque de Topologie (Espaces fibres) Bruxelles (1950).Google Scholar
  14. 7.
    R. Stora, B. Zumino, in preparation.Google Scholar
  15. 8.
    B. Zumino, Les Houches Lectures, August (1983); B. Zumino, Wu Yong Shi, A. Zee, to appear in Nucl. Phys.; L. Bonora, P. Pasti, Padua preprint IFPD 20/83; P.K. Townsend, G. Sierra, LPTENS 83/12 (1983); Feynman graph calculations are well represented in several papers by P.H. Frampton, T.W. Kephart, P.R. D28:1010 (1983); P.L. 50:1347 (1983); and a recent preprint. See also refs 4, 18, for the gravitational case. Supersymmetric techniques are given by L. Alvarez Gaumé, this volume; D. Friedan and P. Windey in proceedings of Zakopane’s school (1983), CERN preprint; also ref. 4.Google Scholar
  16. 9.
    I.M. Singer, seminar notes, Santa Barbara seminars (1982); M.F. Atiyah, R. Bott, “The Yang Mills equations over Riemann surfaces”, preprint; M.F. Atiyah, I.M. Singer, in preparation; M.F. Atiyah, K. theory, Benjamin (1969); T.R. Ramadas, C.M.P., to appear. For the computation of the (co)homology of g, G/g, see R. Thorn in Colloque de Topologie Algébrique, Louvain 1956, Masson 1957.Google Scholar
  17. 10.
    C. Becchi, A. Rouet, R. Stora in Field theory, Quantization and Statistical Physics, E. Tirapegui Ed. Reidel (1981) pp. 3-32.Google Scholar
  18. 11.
    F. Langouche, T. Schucker, R. Stora, in preparation. The direct Faddeev Popov treatment will be found there.Google Scholar
  19. 12.
    Although “Brs” originally made use of an anticommuting parameter generating the Slavnov transformation s, this parameter was quickly gotten rid of, (cf. e.g. ref. 5), and the Slavnov operation s was there defined as an antiderivation anticipating that the whole machinery was merely involving differential forms. Anticommuting parameters have nevertheless been systematically used in the superspace formalism advocated by the Tel Aviv-Paris group15 (Y. Nee’man, L. Baulieu, J. Thierry Mieg) by the Padua-Milano group5, 16 (L. Bonora, P. Cotta Ramusino, P. Pasti, M. Tonin) and early introduced by G. Curci, R. Ferrari, P.L. 63B:91 (1976) and O. Piguet, M. Schweda.MathSciNetGoogle Scholar
  20. 13.
    cf. e.g. R. Stora in “New developments in quantum field theory and Statistical Mechanics”, Cargèse 1976, M. Levy, P. Mitter Ed., NATO ASI Series B26, Plenum 1977; J. Dixon, unpublished.Google Scholar
  21. 14.
    S. Kobayashi, K. Nomizu, Foundations of differential geometry, Interscience (1963); S.S. Chern, Complex manifolds without potential theory, Springer (1979); See also ref. 13.Google Scholar
  22. 15.
    Y. Nee’man, T. Regge, J. Thierry-Mieg in Proc. XIXth International Conference on high energy physics, Tokyo (1978); This is the first article of a long list which I apologize not to be able to include here. Recent contributions to this programme can for instance be found in L. Baulieu, J. Thierry-Mieg, LPTHE 83/25, to appear in Nucl. Phys.Google Scholar
  23. 16.
    L. Bonora, P. Cotta Ramusino, P.L. 107B:87 (1981); Other references to the PaduaMilano scheme can be found here.Google Scholar
  24. 17.
    E. Witten, N.P. B223:422 (1983)MathSciNetCrossRefGoogle Scholar
  25. A.P. Balachandran, V.P. Nair, C.G. Trahern, P.R. D27:1369 (1983); Chou Kuang chao, Guo Han ying, Wu Ke, Song Xing chang, AS ITP 83-027, 83-033.MathSciNetGoogle Scholar
  26. 18.
    L. Alvarez Gaumé, this volume; L. Alvarez Gaumé, E. Witten, Nucl. Phys. to appear; See also ref. 11.Google Scholar
  27. 19.
    See ref. 9. Also M. Asorey, P.K. Mitter, CERN TH-3424 to be published in CMP.Google Scholar
  28. 20.
    fixed-time 3-space is compactified to S3.Google Scholar
  29. 21.
    E. Cartan, Systèmes différentiels extérieurs, Hermann, Paris; J.M. Souriau, Systèmes dynamiques, Dunod Paris; R. Abraham, J. Marsden, Foundations of mechanics, Benjamin (1978).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Raymond Stora
    • 1
  1. 1.L. A. P. P.Annecy-le-Vieux CedexFrance

Personalised recommendations