Guage Invariant Frequency Splitting in Non Abelian Lattice Guage Theory

  • P. K. Mitter
Part of the NATO ASI Series book series (NSSB, volume 115)


Lattice gauge theory, the problem of quark confinement and renormalization group (RG) methods have constituted a central theme of this school. As is well known, quark confinement, the existence of a mass gap, etc., can be proved in pure 4-dimensional Euclidean lattice gauge theory for a sufficiently large coupling constant /1/. On the other hand, perturbative RG studies show asymptotic freedom at short distances.++ As K.G. Wilson has forcefully advocated over the years, the modern RG /2 / is essential to study the connection between the short and long distance behavior. Fortunately, the modern RG is slowly coming under mathematical control§, and it is to be hoped that in the not too distant future these methods will become powerful enough for the control of the most challenging and fascinating of renormalizable field theories: non-abelian gauge field theory in four dimensions.


Gauge Transformation Continuum Limit Gauge Field Lattice Gauge Theory Gauge Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.G. Wilson, Phys. Rev. D10, 2445 (1974).ADSGoogle Scholar
  2. —, in: “New Developments in Quantum Field Theory and Statistical Mechanics,” M. Lévy and P.K. Mitter, eds., Plenum Press, N.Y. (1977). K. Osterwalder, ibid.Google Scholar
  3. J. Drouffe and C. Itzykson, Phys. Rep. 38C (1978), 133.MathSciNetADSCrossRefGoogle Scholar
  4. K. Osterwalder and E. Seiler, Ann. Phys. 110, 440 (1978).MathSciNetADSCrossRefGoogle Scholar
  5. E. Seiler: Lecture notes in Physics No. 159, Springer (1982).Google Scholar
  6. 2.
    K.G. Wilson and J. Kogut, Phys. Rep. C, 12 (1974), 75ADSCrossRefGoogle Scholar
  7. K.G. Wilson, Rev. Mod. Phys. 47 (1975), 773ADSCrossRefGoogle Scholar
  8. —, Rev. Mod. Phys. 55 (1983), 583ADSCrossRefGoogle Scholar
  9. —, in: “Recent Developments in Gauge Theories,” G. ‘tHooft et al, eds., Plenum Press, N.Y. (1980).Google Scholar
  10. 3.
    J.H. Lowenstein and P.K. Mitter, Ann. of Physics 105 (1977), 138.ADSCrossRefGoogle Scholar
  11. G. Valent, Thèse d’Etat (Université Paris VII, 1979).Google Scholar
  12. 4.
    P.K. Mitter, G. Valent, Phys. Lett. 70B (1977), 65.MathSciNetADSGoogle Scholar
  13. 5.
    M. Göpfert and G. Mack, Comm. Math. Phys. 82 (1982), 545.ADSCrossRefGoogle Scholar
  14. J. Frbölich, Comm. Math. Phys. 47 (1976), 233.MathSciNetADSCrossRefGoogle Scholar
  15. D. Brydges, Coiran. Math. Phys. 58 (1978), 313.MathSciNetADSCrossRefGoogle Scholar
  16. 6.
    G. de Rham, “Variétés différentiates,” Hermann, Paris (1960).Google Scholar
  17. 7.
    J.L. Koszul, Lectures on Fibre Bundles and Differential Geometry, Tata Institute of Fundamental Research, Bombay (1960).Google Scholar
  18. S.S. Chern, “Complex Manifolds Without Potential Theory,”D. Van Nostrand, Princeton, N.J. (1967).MATHGoogle Scholar
  19. 8.
    M. Atiyah and R. Bott, Yang-Mills fields on Riemann surfaces (to be published).Google Scholar
  20. 9.
    J. Glimm and A. Jaffe, Comm. Math. Phys 56 (1977), 195.MathSciNetADSCrossRefGoogle Scholar
  21. L. Gross, Convergence of U(1)3 lattice gauge theory to its continuum limit (to be published).Google Scholar
  22. A. Guth, Phys. Rev. D21 (1980), 2291.MathSciNetADSGoogle Scholar
  23. 10.
    G. Mack, Dielectric lattice gauge theory (DESY 83-052), to appear in Nuclear Physics B.Google Scholar
  24. 11.
    B. Sharpe, Gribov copies and the Faddeev-Popov formula in lattice gauge theories (to be published in Nuclear Physics B).Google Scholar
  25. 12.
    P. Hirschfeld, Nucl. Phys. B 157 (1978), 37.MathSciNetADSGoogle Scholar
  26. 13.
    B.W. Lee and J. Zinn-Justin, Phys. Rev. D5 (1972), 3121.ADSGoogle Scholar
  27. 14.
    K. Gawedski and A. Kupiainen, Comm. Math. Phys. 77_ (1980), 31.MathSciNetADSCrossRefGoogle Scholar
  28. 15.
    K. Symanzik, in: “Recent Developments in Gauge Theories,” op.cit.Google Scholar
  29. 16.
    P. Breitenlohner and D. Maison, Comm. Math. Phys. 52: (1977), 11, 39, 55.MathSciNetADSCrossRefGoogle Scholar
  30. 17.
    I.M. Singer, Comm. Math. Phys. 60 (1978), 7.MathSciNetADSMATHCrossRefGoogle Scholar
  31. M.S. Narasimhan and T.R. Ramadas, Comm. Math. Phys. 67 (1979), 21.MathSciNetCrossRefGoogle Scholar
  32. P.K. Mitter and C.M. Viallet, ibid., 79 (1981), 457.Google Scholar
  33. 18.
    M. Asorey and P.K. Mitter, CERN/TH 3424.Google Scholar
  34. 19.
    G. Gallavotti et al, Comm. Math. Phys. 59 (1978), 143; 71 (1980), 95.MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • P. K. Mitter
    • 1
  1. 1.Laboratoire de Physique Théorique et Hautes EnergiesUniversité Pierre et Marie Curie (Paris VI)Paris Cedex 05France

Personalised recommendations