Renormalization Group and Mayer Expansions

  • Gerhard Mack
Part of the NATO ASI Series book series (NSSB, volume 115)


Mayer expansions promise to become a powerful tool in exact renormalization group calculations. Iterated Mayer expansions were sucessfully used in the rigorous analysis of 3-dimensional U(1) lattice gauge theory by Göpfert and the author [1, 2], and it is hoped that they will also be useful in the 2-dimensional nonlinear σ-model, and elsewhere.


Partition Function Renormalization Group Continuum Limit Gaussian Measure Lattice Gauge Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 0.
    K. Wilson, Phys. Rev. D2, 1473 (1970).ADSGoogle Scholar
  2. 1.
    M. Göpfert and G. Mack, Commun. Math. Phys. 81, 97 (1981).ADSCrossRefGoogle Scholar
  3. 2.
    M. Göpfert and G. Mack, Commun. Math. Phys. 82, 545 (1982).ADSCrossRefGoogle Scholar
  4. 3.
    E. Brezin, J. Zinn Justin, J. C. LeGuillon, Phys. Rev. D14, 2615 (1976)ADSGoogle Scholar
  5. A. M. Polyakov, Phys. Letters B59, 79 (1975).MathSciNetADSGoogle Scholar
  6. 4.
    L. Gross, Commun. Math. Phys. 92, 137 (1983).ADSMATHCrossRefGoogle Scholar
  7. 5.
    M. Karliner and G. Mack, Nucl. Phys. B225 [Fs9], 371 (1983).ADSCrossRefGoogle Scholar
  8. T. Sterling, J. Greensite, Nucl. Phys. B220 FS8, 327 (1983).ADSCrossRefGoogle Scholar
  9. 6.
    J. Glimm and A. Jaffe, Quantum physics, Springer Verlag Heidelberg 1981, and references given there.Google Scholar
  10. 7.
    J. Glimm, A. Jaffe, T. Spencer, Ann. Phys. 101, 610, 631 (1975).MathSciNetADSGoogle Scholar
  11. 8.
    D. Brydges, Commun. Math. Phys. 58, 313 (1978)MathSciNetADSCrossRefGoogle Scholar
  12. D. Brydges and P. Federbush, Commun. Math. Phys. 72, 197 (1980).MathSciNetADSCrossRefGoogle Scholar
  13. 9.
    D. Brydges, J. Fröhlich, T. Spencer, Commun. Math. Phys. 83, 123 (1982).ADSCrossRefGoogle Scholar
  14. 10.
    D. Ruelle, Statistical mechanics, New York: Benjamin 1969.MATHGoogle Scholar
  15. 11.
    K. Gawedzki and A. Kupiainen, Commun. Math. Phys. 77, 31 (1980).MathSciNetADSCrossRefGoogle Scholar
  16. 12.
    T. Balaban, Commun. Math. Phys. 89, 571 (1983).MathSciNetADSMATHCrossRefGoogle Scholar
  17. 13.
    K. Gawedzki and A. Kupiainen, Ann. Phys. 147, 198 (1983).MathSciNetADSCrossRefGoogle Scholar
  18. 14.
    A. Kupiainen, lectures presented at this school; J. Imbrie, lectures presented at this school.Google Scholar
  19. 15.
    G. S. Rushbrooke, J. Math. Phys. 5, 1106 (1964)ADSCrossRefGoogle Scholar
  20. G. S. Rushbrooke, G. A. Baker and P. J. Woods, in: Phase transitions and critical phenomena, C. Domb and M. Green eds., Academic press, New York, 1974, vol. 3. C. Domb, ibid., p. 77.Google Scholar
  21. 16.
    Ch. Gruber, A. Kunz, Commun. Math. Phys. 22, 133 (1971).MathSciNetADSCrossRefGoogle Scholar
  22. 17.
    D. Brydges, P. Federbush, J. Math. Phys. 19, 2064 (1978).MathSciNetADSCrossRefGoogle Scholar
  23. 18.
    J. Fröhlich, Commun. Math. Phys. 47, 233 (1976).ADSCrossRefGoogle Scholar
  24. 19.
    E. Brezin, J. Zinn Justin, J. C. LeGuillon, Phys. Rev. D14, 2615 (1976).ADSGoogle Scholar
  25. 20.
    K. Symanzik, J. Math. Phys. 7, 510 (1966).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Gerhard Mack
    • 1
  1. 1.II. Institut für Theoretische PhysikUniversität HamburgDeutschland

Personalised recommendations