Advertisement

Lattice Gauge Theory

  • C. P. Korthals Altes
Part of the NATO ASI Series book series (NSSB, volume 115)

Abstract

Lattice gauge theory1 is now ten years old. Apart from the theoretical insight the lattice formulation gives, it is very well suited for computer simulations, as its inventor advocated already some five years ago at this school2. Since three years3 this approach has extracted useful information out of lattice gauge theory and spurred many interesting questions.

Keywords

Wilson Loop String Tension Background Field Lattice Gauge Theory Effective Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.G. Wilson, Phys. Rev. D14, 2455 (1974).Google Scholar
  2. 2.
    K.G. Wilson, Recent Developments in Gauge Theories, edited by G. ’t Hooft (Plenum Press,##New York, 1980).Google Scholar
  3. 3.
    M. Creutz, Phys. Rev. D21, 2308 (1980).MathSciNetADSGoogle Scholar
  4. 4.
    A. Hasenfratz, P. Hasenfratz, Phys. Lett. 93B, 165 (1980).ADSGoogle Scholar
  5. 5.
    C.G. Callan, Phys. Rev. D2, 1541 (1970).ADSGoogle Scholar
  6. K. Symanzik, Comm. Math. Phys. 49, 424 (1970).Google Scholar
  7. 6.
    B.E. Baaquie, Phys. Rev. D16, 2612 (1977).ADSGoogle Scholar
  8. 7.
    W. Celmaster, R.J. Gonzalvez, Phys. Rev. D20, 1420 (1979).ADSGoogle Scholar
  9. 8.
    G. Münster, Nucl. Phys. B180 FS 2 (1981), 23.ADSCrossRefGoogle Scholar
  10. 9.
    J.M. Drouffe, J.B. Zuber, Phys. Repts., to be published.Google Scholar
  11. 10.
    C.P. Korthals Altes, Proceedings of the Colloquium on Recent Progress in Lagrangian Field Theory, Marseille, 1974.Google Scholar
  12. 11.
    K. Osterwalder, E. Seiler, Ann. of Phys. (NY), 110 (1978), 440.MathSciNetADSCrossRefGoogle Scholar
  13. 12.
    D. Gross, R. Dashen, Phys. Rev. D23 (1980), 2340.Google Scholar
  14. A. and P. Hasenfratz, Nucl. Phys. B193 (1981), 210.MathSciNetADSCrossRefGoogle Scholar
  15. 13.
    A. Gonzalez-Arroyo, C.P. Korthals Altes, Nucl. Phys. B205 FS 5 (1982), 45.ADSGoogle Scholar
  16. 14.
    J.W. Dash, J. Jurkiewicz, C.P. Korthals Altes, CERN TH, 3621, June 1983, to appear in Nucl. Phys.Google Scholar
  17. 15.
    R.K. Ellis, G. Martinelli, Rome Preprint, October 1983.Google Scholar
  18. 16.
    P. Weisz, S. Scharatchadran, DESY 81-083 (1981).Google Scholar
  19. 17.
    B. Grossmann, S. Samuel, Rockefeller preprint, RU 82/B/28 (1982).Google Scholar
  20. 18.
    W. Fischler, Nucl. Phys. B129, 157 (1977).MathSciNetADSCrossRefGoogle Scholar
  21. 19.
    L.F. Abbott, Nucl. Phys. B185 (1981), 189.ADSCrossRefGoogle Scholar
  22. 20.
    G.’ t Hooft, Acta Univ. Wratislavensis n° 38.Google Scholar
  23. 21.
    O. Tarasov et al., Phys. Lett. 93B (1980), 429.ADSGoogle Scholar
  24. 22.
    Yu. Makeenko, M.I. Polikarpov, Nucl. Phys. B205 FS 5 (1982), 386.ADSCrossRefGoogle Scholar
  25. 23.(a)
    G. ’t Hooft, Nucl. Phys. B52 (1973), 444.CrossRefGoogle Scholar
  26. (b).
    G. ’t Hooft, Nucl. Phys. B138 (1978), 1.MathSciNetADSCrossRefGoogle Scholar
  27. 24.
    C. Becchi, A. Rouet, R. Stora, Comm. Math. Phys. 42 (1975), 127.MathSciNetADSCrossRefGoogle Scholar
  28. 25.
    J. Zinn-Justin, Trends in Elementary Particle Theory, Springer, Berlin, 1975.Google Scholar
  29. 26.
    M. Creutz, L. Jacobs, C. Rebbi, Phys. Repts., to be published.Google Scholar
  30. 27.
    W.E. Caswell, Phys. Rev. Lett. 33 (1974), 244.ADSCrossRefGoogle Scholar
  31. 28.
    D.R.J. Jones, Nucl. Phys. B75 (1974), 531.ADSCrossRefGoogle Scholar
  32. 29.
    E. Pieterinen, Nucl. Phys. B190 (1981), 349.ADSCrossRefGoogle Scholar
  33. 30.
    D. Barkai et al., BNL preprints, January, June, 1983.Google Scholar
  34. 31.
    A. di Giacomo, G.C. Rossi, Phys. Lett. 100B (1981), 481.ADSGoogle Scholar
  35. 32.
    T. Eguchi, H. Kawai, Phys. Rev. Lett. 48 1063.Google Scholar
  36. 33.
    G. Bhanot, U. Heller, H. Neuberger, Phys. Lett. 113B (1982), 147.Google Scholar
  37. 34.
    J. Jurkiewicz, A. Gonzalez-Arroyo, C.P. Korthals Altes, Proceedings Nato Advanced Summer Institute 1981, Plenum Press.Google Scholar
  38. 35.
    A. Gonzalez-Arroyo, M. Okawa, Phys. Lett. 120B (1983), 174 and Phys. Rev., to be published.ADSGoogle Scholar
  39. 36.
    A. Gonzalez-Arroyo, C.P. Korthals Altes, Phys. Lett. I3IB (1983), 296.Google Scholar
  40. 37.
    K. Fabricius, C.P. Korthals Altes, Wuppertal preprint, December 1983.Google Scholar
  41. 38.
    A. Gonzalez-Arroyo, M. Okawa, BNL 32 988 (1982). K. Fabricius, OM. Haan, WU B 84-1.Google Scholar
  42. 39.
    G. ’t Hooft, Comm. Math. Phys. 81 (1981), 267.MathSciNetADSMATHCrossRefGoogle Scholar
  43. 40.
    P. van Baal, Comm. Math. Phys. 85, 529 (1982), Utrecht Preprints, 1983.Google Scholar
  44. 41.
    P. van Baal, F. Klinkhamer, Utrecht preprints, (1983).Google Scholar
  45. 42.
    J. Groeneveld, J. Jurkiewicz, C.P. Korthals Altes, Physica Scripta 23 (1981), 1022.MathSciNetADSMATHCrossRefGoogle Scholar
  46. 43.
    This is perfectly consistent with the index theorem which states that the difference between the number of positive helicity zero modes and negative helicity zero modes for a Dirac field in the adjoint representation on the torus equals:-2NP.Google Scholar
  47. 44.
    G. Bhanot, R. Dashen, Phys. Lett. 113B, (1982), 299.ADSGoogle Scholar
  48. 45.
    Dots mean summation over all indices.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • C. P. Korthals Altes
    • 1
  1. 1.Centre de Physique ThéoriqueC.N.R.S. - Luminy - Case 907Marseille Cedex 9France

Personalised recommendations