Defect Mediated Phase Transitions in Superfluids, Solids, and their Relation to Lattice Gauge Theories

  • H. Kleinert
Part of the NATO ASI Series book series (NSSB, volume 115)

Abstract

We compare the defects in different physical systems, exhibit their relevant properties for phase transitions, and point out the similarity of the lattice field theories by which their ensembles can be studied.

Keywords

Entropy Vortex Helium Summing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    In solids this was noticed in 1952 by W. Shockley in L’Etat Solid, Proc. Neuvieme Conseil de Physique, Brussels, ed. R. Stoops (Institut International du Physique, solvay, Brussels, 1952).Google Scholar
  2. 2).
    In superfluid He this was proposed by R.P. Feynman in 1955 in Progress in Low Temperature Physics, 1, ed. C.J. Gorter (North-Holland, Amsterdam, 1955) and later byGoogle Scholar
  3. V.N. Popov, Sov. Phys. JETP 37 341(1973). In two dimensions, the study was performed in detail in He II byADSGoogle Scholar
  4. J.M. Kosterlitz and D.J. Thouless, J. Phys. C (Solid State Phys.) 6, 1181 (1973) and byADSCrossRefGoogle Scholar
  5. J.V. Jorgé, L.P. Kadanoff et al., Phys. Rev. B16, 1217 (1977). The two dimensional melting was attempted in complete analogy, byADSGoogle Scholar
  6. D.R. Nelson and B.I. Halperin, Phys. Rev. B19, 2457(1979), but these authors mutilated the physical properties of defects by givinq them an unphysical core energy which led to strange phases. For a correct treatment seeADSGoogle Scholar
  7. H. Kleinert, Phys. Lett. 95A, 381 (1983).MathSciNetADSGoogle Scholar
  8. 3).
    In four dimensional QCD, a similar study was initiated by A. Polyakov et al., Phys. Lett. 59B, 85 (1975) andMathSciNetADSGoogle Scholar
  9. G. t’Hooft, Phys. Rev. D14, 3432 (1976) and continued by many others such as C. Callan, R.F. Dashen, and D.J. Gross, see Phys. Rev. Lett. 44D, 435 (1980) and references.ADSGoogle Scholar
  10. 4).
    The confinement in 3 dimensional compact QED was realized by A. Polyakov, Phys. Lett. 59B, 82 (1975) and Nucl. Phys. B120, 429 (1977). See alsoMathSciNetADSGoogle Scholar
  11. J.B. Bronzan and Ashok Das, Phys. Rev. D26, 1415 (1982) for a recent study, andADSGoogle Scholar
  12. T. Banks, R. Myerson and J. Kogut, Nucl. Phys. B129, 493 (1977).ADSCrossRefGoogle Scholar
  13. 5).
    E. Kröner, Lecture presented at the 1980 Les Houches Summer School on The Physics of Defects, ed. R. Balian (North-Holland, Amsterdam, 1981).Google Scholar
  14. 6).
    R. de Wit, Journal of Research (Nat. Bur. of Standards-A, Phys. and Chem.), 77A, 49 (1973).Google Scholar
  15. 7).
    For more details see H. Kleinert, Gauge Theory of Defects and Stresses, Gordon and Breach, 1984.Google Scholar
  16. 8).
    H. Kleinert, Lett. Nuovo Cimento, 35, 41 (1982).MathSciNetCrossRefGoogle Scholar
  17. 9).
    J.A. Schouten, Ricci-Calculus, Springer, Berlin, 1954.MATHGoogle Scholar
  18. 10).
    H. Kleinert, Phys. Lett. A93, 861 (1982).MathSciNetGoogle Scholar
  19. 11).
    W. Helfrich, Proc. International Liquid Crystal Conference, Bangalore, Heyden and Son, London, 1980.Google Scholar
  20. 12).
    H. Kleinert, Phys. Lett. 95A, 381, 493 (1983).MathSciNetADSGoogle Scholar
  21. 13).
    R.G. Bowers and G.S. Joyce, Phys. Lett. 19, 630 (1967), See alsoCrossRefGoogle Scholar
  22. D.D. Bettd in Phase Transitions and Critical Phenomena, Vol 3, eds. C. Domb and M. Green, Academic, New York, 1947.Google Scholar
  23. 14).
    J. Villain, J. de Physique (Paris), J. Phys. 36, 581 (1975). It is important to notice that the approximation is valid not only for large 3 (where it is obvious with βv-β) but also for small 3. In fact, the phase transition lies at β∼.46, i.e. in the low β regime where ßV ∼- (2log /2 - 2/4 + 5 4/192-...)-1 .33, not in the high β regime where ßv∼ß (1-1/2ß+...). It corresponds to the approximation In (β)/I0(β) ∼ exp(n2log /2) for n = C,+ 1 and small β, rather than In (β)/I0 (β) ∼ exp(-n2/2β) for large β. This was overlooked byCrossRefGoogle Scholar
  24. T. Banks, R. Myerson, and J. Kogut, Nucl. Phys. B129, 493 (1979) and many later papers.ADSGoogle Scholar
  25. 15).
    H. Kleinert, Phys. Lett. A91, 295 (1982).MathSciNetADSGoogle Scholar
  26. 16).
    H. Kleinert, Lett. Nuovo Cimento 37, 425 (1983).CrossRefGoogle Scholar
  27. 17).
    H. Kleinert, Phys. Lett. A89, 294 (1982), and Lett. Nuovo Cimento 34, 464 (1982).MathSciNetADSGoogle Scholar
  28. 18).
    H. Kleinert, Phys. Lett. A95, 493 (1983).ADSGoogle Scholar
  29. 19).
    E. Brezin and J.M. Drouffe, Nucl Phys. B200 FS4, 93 (1982)MathSciNetADSCrossRefGoogle Scholar
  30. J.M. Drouffe, Nucl. Phys. B205, FS5 27 (1982).MathSciNetADSCrossRefGoogle Scholar
  31. 20).
    J. Greensite and B. Lautrup, Phys. Lett. 104B, 41 (1981).ADSGoogle Scholar
  32. H. Flyvbjerg, B. Lautrup, and J.B. Zuber, Phys. Lett. 110B, 279 (1982), B. Lautrup, Mean Field Methods in Gauge Theories, Lecture presented at the 13th Symposium on High Energy Physics, Bad Schandau, DDR, 1982.ADSGoogle Scholar
  33. 21).
    R. Balian et al., Phys. Rev. D11, 2104 (1975).ADSGoogle Scholar
  34. 22).
    S. Ami, T. Hofsäss and R. Horsley, Phys. Lett. 101A, 145 (1984).ADSGoogle Scholar
  35. 23).
    L. Jacobs and H. Kleinert, J.Phys. A15, L 361 (1984).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • H. Kleinert
    • 1
  1. 1.Institut für Theorie der ElementarteilchenFreie Universität BerlinBerlin 33Germany

Personalised recommendations