Skip to main content

Defect Mediated Phase Transitions in Superfluids, Solids, and their Relation to Lattice Gauge Theories

  • Chapter
Progress in Gauge Field Theory

Part of the book series: NATO ASI Series ((NSSB,volume 115))

  • 513 Accesses

Abstract

We compare the defects in different physical systems, exhibit their relevant properties for phase transitions, and point out the similarity of the lattice field theories by which their ensembles can be studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. In solids this was noticed in 1952 by W. Shockley in L’Etat Solid, Proc. Neuvieme Conseil de Physique, Brussels, ed. R. Stoops (Institut International du Physique, solvay, Brussels, 1952).

    Google Scholar 

  2. In superfluid He this was proposed by R.P. Feynman in 1955 in Progress in Low Temperature Physics, 1, ed. C.J. Gorter (North-Holland, Amsterdam, 1955) and later by

    Google Scholar 

  3. V.N. Popov, Sov. Phys. JETP 37 341(1973). In two dimensions, the study was performed in detail in He II by

    ADS  Google Scholar 

  4. J.M. Kosterlitz and D.J. Thouless, J. Phys. C (Solid State Phys.) 6, 1181 (1973) and by

    Article  ADS  Google Scholar 

  5. J.V. Jorgé, L.P. Kadanoff et al., Phys. Rev. B16, 1217 (1977). The two dimensional melting was attempted in complete analogy, by

    ADS  Google Scholar 

  6. D.R. Nelson and B.I. Halperin, Phys. Rev. B19, 2457(1979), but these authors mutilated the physical properties of defects by givinq them an unphysical core energy which led to strange phases. For a correct treatment see

    ADS  Google Scholar 

  7. H. Kleinert, Phys. Lett. 95A, 381 (1983).

    MathSciNet  ADS  Google Scholar 

  8. In four dimensional QCD, a similar study was initiated by A. Polyakov et al., Phys. Lett. 59B, 85 (1975) and

    MathSciNet  ADS  Google Scholar 

  9. G. t’Hooft, Phys. Rev. D14, 3432 (1976) and continued by many others such as C. Callan, R.F. Dashen, and D.J. Gross, see Phys. Rev. Lett. 44D, 435 (1980) and references.

    ADS  Google Scholar 

  10. The confinement in 3 dimensional compact QED was realized by A. Polyakov, Phys. Lett. 59B, 82 (1975) and Nucl. Phys. B120, 429 (1977). See also

    MathSciNet  ADS  Google Scholar 

  11. J.B. Bronzan and Ashok Das, Phys. Rev. D26, 1415 (1982) for a recent study, and

    ADS  Google Scholar 

  12. T. Banks, R. Myerson and J. Kogut, Nucl. Phys. B129, 493 (1977).

    Article  ADS  Google Scholar 

  13. E. Kröner, Lecture presented at the 1980 Les Houches Summer School on The Physics of Defects, ed. R. Balian (North-Holland, Amsterdam, 1981).

    Google Scholar 

  14. R. de Wit, Journal of Research (Nat. Bur. of Standards-A, Phys. and Chem.), 77A, 49 (1973).

    Google Scholar 

  15. For more details see H. Kleinert, Gauge Theory of Defects and Stresses, Gordon and Breach, 1984.

    Google Scholar 

  16. H. Kleinert, Lett. Nuovo Cimento, 35, 41 (1982).

    Article  MathSciNet  Google Scholar 

  17. J.A. Schouten, Ricci-Calculus, Springer, Berlin, 1954.

    MATH  Google Scholar 

  18. H. Kleinert, Phys. Lett. A93, 861 (1982).

    MathSciNet  Google Scholar 

  19. W. Helfrich, Proc. International Liquid Crystal Conference, Bangalore, Heyden and Son, London, 1980.

    Google Scholar 

  20. H. Kleinert, Phys. Lett. 95A, 381, 493 (1983).

    MathSciNet  ADS  Google Scholar 

  21. R.G. Bowers and G.S. Joyce, Phys. Lett. 19, 630 (1967), See also

    Article  Google Scholar 

  22. D.D. Bettd in Phase Transitions and Critical Phenomena, Vol 3, eds. C. Domb and M. Green, Academic, New York, 1947.

    Google Scholar 

  23. J. Villain, J. de Physique (Paris), J. Phys. 36, 581 (1975). It is important to notice that the approximation is valid not only for large 3 (where it is obvious with βv-β) but also for small 3. In fact, the phase transition lies at β∼.46, i.e. in the low β regime where ßV ∼- (2log /2 - 2/4 + 5 4/192-...)-1 .33, not in the high β regime where ßv∼ß (1-1/2ß+...). It corresponds to the approximation In (β)/I0(β) ∼ exp(n2log /2) for n = C,+ 1 and small β, rather than In (β)/I0 (β) ∼ exp(-n2/2β) for large β. This was overlooked by

    Article  Google Scholar 

  24. T. Banks, R. Myerson, and J. Kogut, Nucl. Phys. B129, 493 (1979) and many later papers.

    ADS  Google Scholar 

  25. H. Kleinert, Phys. Lett. A91, 295 (1982).

    MathSciNet  ADS  Google Scholar 

  26. H. Kleinert, Lett. Nuovo Cimento 37, 425 (1983).

    Article  Google Scholar 

  27. H. Kleinert, Phys. Lett. A89, 294 (1982), and Lett. Nuovo Cimento 34, 464 (1982).

    MathSciNet  ADS  Google Scholar 

  28. H. Kleinert, Phys. Lett. A95, 493 (1983).

    ADS  Google Scholar 

  29. E. Brezin and J.M. Drouffe, Nucl Phys. B200 FS4, 93 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  30. J.M. Drouffe, Nucl. Phys. B205, FS5 27 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  31. J. Greensite and B. Lautrup, Phys. Lett. 104B, 41 (1981).

    ADS  Google Scholar 

  32. H. Flyvbjerg, B. Lautrup, and J.B. Zuber, Phys. Lett. 110B, 279 (1982), B. Lautrup, Mean Field Methods in Gauge Theories, Lecture presented at the 13th Symposium on High Energy Physics, Bad Schandau, DDR, 1982.

    ADS  Google Scholar 

  33. R. Balian et al., Phys. Rev. D11, 2104 (1975).

    ADS  Google Scholar 

  34. S. Ami, T. Hofsäss and R. Horsley, Phys. Lett. 101A, 145 (1984).

    ADS  Google Scholar 

  35. L. Jacobs and H. Kleinert, J.Phys. A15, L 361 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Kleinert, H. (1984). Defect Mediated Phase Transitions in Superfluids, Solids, and their Relation to Lattice Gauge Theories. In: ’t Hooft, G., Jaffe, A., Lehmann, H., Mitter, P.K., Singer, I.M., Stora, R. (eds) Progress in Gauge Field Theory. NATO ASI Series, vol 115. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0280-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0280-4_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0282-8

  • Online ISBN: 978-1-4757-0280-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics