Advertisement

Approximate and Simplified Models

  • Antonis Papadourakis
  • John E. Rijnsdorp

Abstract

Although the basic principle of distillation is simple, modelling columns with many trays leads to large models with complex overall behavior. In the past, this has encouraged the development of many shortcut models for process design purposes. However, with the present availability of cheap and powerful computer hardware and software it has become possible to utilize rigorous static and dynamic models (see preceding chapter) for off-line use.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arkun, Y. (1987). Dynamic block relative gain array and its connection with the performance and stability of decentralized control structures.Int. J. Control 46, 1187–1193.CrossRefGoogle Scholar
  2. Bamberger, W. and Isermann, R. (1978). Adaptive steady-state optimization of slow dynamic processes. Automatica 14, 223–230.CrossRefGoogle Scholar
  3. Benalou, A., Seborg, D. E., and Mellichamp, D. A. (1982). Low order, physically lumped dynamic models for distillation column control. Presented at the AIChE Annual Meeting, November 1982, Los Angeles, CA.Google Scholar
  4. Betlem, D. H. L. (1991). Personal communication.Google Scholar
  5. Bhat, P. V. and Williams, T. J. (1969). Approximate dynamic models of distillation operations and their relation to overall column control methods. Int. Chem. Eng. Symposium Series 32, 22–32.Google Scholar
  6. Bonvin, D. and Mellichamp, D. A. (1982a). A generalized structural dominance method for the analysis of large-scale systems.Int. J. Control 35, 807–827.CrossRefGoogle Scholar
  7. Bonvin, D. and Mellichamp, D. A. (1982b). A unified derivation and critical review of modal approaches to model reduction.Int. J. Control 35, 829–848.CrossRefGoogle Scholar
  8. Celebi, C. and Chimowitz, E. H. (1985). Analytic reduced order dynamic models for large equilibrium staged cascades.AIChE J. 31, 2039–2051.CrossRefGoogle Scholar
  9. Chen, C. H. (1969). M.Sc. thesis. Polytechnic Institute of New York.Google Scholar
  10. Cho, Y. S. and Joseph, B. (1983a). Reduced-order steady-state and dynamic models for separation processes Part L Development of the model reduction procedure.AIChE J. 29, 261–269.CrossRefGoogle Scholar
  11. Cho, Y. S. and Joseph, B. (1983b). Reduced-order steady-state and dynamic models for separation processes Part IL Application to nonlinear multicomponent systems. AIChE J. 29, 270–276.CrossRefGoogle Scholar
  12. Cho, Y. S. and Joseph, B. (1984). Reduced-order models for separation columns—III. Application to columns with multiple feeds and sidestreams. Comput. Chem. Eng. 8, 81–90.CrossRefGoogle Scholar
  13. Cotterman, R. L. and Prausnitz, J. M. (1985). Flash calculations for continuous or semicon- tinuous mixtures using an equation of state. Ind. Eng. Chem. Proc. Des. Dev. 24, 434–443.CrossRefGoogle Scholar
  14. Cotterman, R. L., Bender, R., and Prausnitz, J. M. (1985). Phase equilibria for mixtures containing very many components. Development and application of continuous thermodynamics for chemical process design. Ind. Eng. Chem. Proc. Des. Dev. 24, 194–203.CrossRefGoogle Scholar
  15. Cotterman, R. L., Chou, G. F., and Prausnitz, J. M. (1986). Comments on “Flash calculations for continuous or semicontinuous mixtures using an equation of state.” Ind. Eng. Chem. Proc. Des. Dev. 25, 840–841.CrossRefGoogle Scholar
  16. Genesio, R. M. and Milanese, M. (1976). A note on the derivation and use of reduced-order models. IEEE Trans. Automat. Control AC-21, 118–122.CrossRefGoogle Scholar
  17. Georgakis, C. and Stoever, M. A. (1982). Time domain order reduction of tridiagonal dynamics of staged processes—I. Uniform lumping. Chem. Eng. Sci. 37, 687–697.CrossRefGoogle Scholar
  18. Hahn, W. (1949). Uber Orthogonalpolynome die q-Differenzengleichungen genügen. Math. Nachrichten 2, 4–34.CrossRefGoogle Scholar
  19. Hawkins, D. E., Tolfo, F., and Chauvin, L. (1987). Group methods for advanced column control. In Handbook of Advanced Process Control Systems and Instrumentation, L. Kane, ed. Houston: Gulf Publishing Co.Google Scholar
  20. Kehlen, H. and Ratzsch, M. T. (1987). Complex multicomponent distillation calculations by continuous thermodynamics.Chem. Eng. Sci. 42, 221–232.CrossRefGoogle Scholar
  21. Kim, C. and Friedly, C. F. (1974). Dynamic modeling of large staged systems.Ind. Eng. Chem. Proc. Des. Dev. 13, 177–181.CrossRefGoogle Scholar
  22. Levy, R. E., Foss, A. S., and Grens, E. A., II (1969). Response modes of a binary distillation column. Ind. Eng. Chem. Fundam. 8, 765–776.CrossRefGoogle Scholar
  23. Moczek, J. S., Otto, R. E., and Williams, T. J. (1963). Proceedings of the Second IFAC Congress, Basle. New York: Pergamon.Google Scholar
  24. Moczek, J. S., Otto, R. E., and Williams, T. J. (1965). Approximation models for the dynamic response of large distillation columns. Chem. Eng. Prog. Symp. Ser. 61, 136–146.Google Scholar
  25. Papadourakis, A. (1985). Stability and Dynamic Performance of Plants with Recycle. Ph.D. Dissertation, University of Massachusetts, Amherst, MA.Google Scholar
  26. Papadourakis, A., Doherty, M. F., and Douglas, J. M. (1989). Approximate dynamic models for chemical process systems. Ind. Eng. Chem. Res. 28, 546–552.CrossRefGoogle Scholar
  27. Perkins, J. D. (1990). Interactions between process design and process control. In Dynamics and Control of Chemical Reactors, Distillation Columns and Batch Processes. IFAC Symposium Series 1990, No. 7, J. E. Rijnsdorp et al., eds. Oxford: Pergamon, 195–203.Google Scholar
  28. Pinto, J. D. and Biscaia, E. C., Jr. (1988). Order reduction strategies for models of staged separation systems. Comput. Chem. Eng. 12, 812–831.CrossRefGoogle Scholar
  29. Rademaker, O., Rijnsdorp, J. E., and Maarleveld, A. (1975). Dynamics and Control of Continuous Distillation Units. Amsterdam: Elsevier Science Publishers.Google Scholar
  30. Rijnsdorp, J. E. (1991). Integrated Process Control and Automation. Amsterdam: Elsevier Science Publishers.Google Scholar
  31. Robinson, C. S. and Gilliland, E. R. (1950). Elements of Fractional Distillation. New York: McGraw-Hill.Google Scholar
  32. Shibata, S. K., Sandler, S. I., and Behrens, R. A. (1987). Phase equilibrium calculations for continuous and semicontinuous mixtures. Chem. Eng. Sci. 42, 1977–1988.CrossRefGoogle Scholar
  33. Shinskey, F. G. (1967). Process Control Systems. New York: McGraw-Hill.Google Scholar
  34. Skogestad, S. and Morari, M. (1987a). Effect of disturbance directions on closed loop performance. Ind. Eng. Chem. Res. 26, 2029–2035.CrossRefGoogle Scholar
  35. Skogestad, S. and Morari, M. (1987b). The dominant time constant for distillation columns. Comput. Chem. Eng. 11, 607–617.CrossRefGoogle Scholar
  36. Skogestad, S. and Morari, M. (1988). Understanding the dynamic behavior of distillation columns. Ind. Eng. Chem. Res. 27,1848–1862.CrossRefGoogle Scholar
  37. Srivastava, R. K. and Joseph, B. (1985). Reduced-order models for separation columns—V. Selection of collocation points. Comput. Chem. Eng. 9, 601–613.CrossRefGoogle Scholar
  38. Srivastava, W. E. and Joseph, B. (1987a). Reduced-order models for staged separation columns—IV. Treatment of columns with multiple feeds and sidestreams via spline fitting. Comput. Chem. Eng. 11, 159–164.CrossRefGoogle Scholar
  39. Srivastava, W. E. and Joseph, B. (1987b). Reduced-order models for staged separation columns—VI. Columns with steep and flat composition profiles. Comput. Chem. Eng. 11, 165–176.CrossRefGoogle Scholar
  40. Stewart, W. E., Levien, K. L., and Morari, M. (1985). Simulation of fractionation by orthogonal collocation. Chem. Eng. Sci. 40,409–421.CrossRefGoogle Scholar
  41. Stoever, M. A. and Georgakis, C. (1982). Time domain order reduction of tridiagonal dynamics of staged processes—IL Nonuniform lumping. Chem. Eng. Sci. 37, 699–705.CrossRefGoogle Scholar
  42. Toijala, K. V. (1968). An approximate model for the dynamic behavior of distillation columns. Part I. General theory. Acta Acad. Aboensis (Math. Phys.) 28(8), 1–18.Google Scholar
  43. Toijala, K. V. (1969). An approximate model for the dynamic behavior of distillation columns. Part II. Composition responses to changes in feed composition for binary mixtures. Acta Acad. Aboensis (Math. Phys.) 29(10), 1–34.Google Scholar
  44. Toijala, K. V. (1971a). An approximate model for the dynamic behavior of distillation columns. Part IV. Comparison of theory with experimental results for changes in feed composition. Acta Acad. Aboensis (Math. Phys.) 31(3), 1–25.Google Scholar
  45. Toijala, K. V. (1971b). An approximate model for the dynamic behavior of distillation columns. Part V. Comparison of theory with experimental results for changes in reflux flow rate. Acta Acad. Aboensis (Math. Phys.) 31(5)1–19.Google Scholar
  46. Toijala, K. V. (1978). Simple models for distillation dynamics. Paper presented at the 86th National AIChE Meeting, April 1–5, 1978, Houston, Texas.Google Scholar
  47. Toijala, K. V. and Fagervik, K. (1972). An approximate model for the dynamic behavior of distillation columns. Part VII. Comparison of model with experimental results for controlled columns by the use of digital simulation. Acta Acad. Aboensis (Math. Phys.) 32(1), 1–17.Google Scholar
  48. Toijala, K. V. and Gustafsson, S. (1971). Process dynamics of multi-component distillation. Kemian Teollisuus 28, 113–120.Google Scholar
  49. Toijala, K. V. and Gustafsson, S. (1972a). Process dynamics of multi-component distillation. Comparison of theoretical model with published experimental results. Kemian Teollisuus 29, 95–103.Google Scholar
  50. Toijala, K. V. and Gustafsson, S. (1972b). On the general characteristics of component distillation dynamics. Kemian Teollisuus 29,173–184.Google Scholar
  51. Toijala, K. V. and Jonasson, D. (1970). An approximate model for the dynamic behavior of distillation columns. Part III. Composition response to changes in reflux flow rate, vapour flow rate and feed enthalpy for binary mixtures. Acta Acad. Aboensis (Math. Phys.) 30(15), 1–21.Google Scholar
  52. Toijala, K. V. and Jonasson, D. (1971). An approximate model for the dynamic behavior of distillation columns. Part VI. Composition response for changes in feed flow rate for binary mixtures.Acta Acad. Aboensis (Math. Phys.) 31(11), 1–27.Google Scholar
  53. Wahl, E. F. and Harriot, P. (1970). Understanding and prediction of the dynamic behavior of distillation columns. Ind. Eng. Chem. Proc. Des. Dev. 9,396.CrossRefGoogle Scholar
  54. Weigand, W. A, Jhawar, A. K., and Williams, T. J. (1972). Calculation method for the response time to step inputs for approximate dynamic models of distillation columns. AIChE J. 18, 1243–1252.CrossRefGoogle Scholar
  55. Wong, K. T. and Luus, R. (1980). Model reduction of high-order multistage systems by the method of orthogonal collocation. Can. J. Chem. Eng. 58, 382.CrossRefGoogle Scholar

Copyright information

© Van Nostrand Reinhold 1992

Authors and Affiliations

  • Antonis Papadourakis
    • 1
  • John E. Rijnsdorp
    • 2
  1. 1.Rohm and Haas CompanyUSA
  2. 2.University of TwenteThe Netherlands

Personalised recommendations