Advertisement

Experimental Comparison of Control Structures

  • Kurt V. Waller

Abstract

In process control applications multiloop single-input-single-output (SISO) control is the most common approach to solve multi-input-multi-output (MIMO) control problems. These so-called decentralized control systems are usually easier to design and tune than a full MIMO control system. Also tolerance against failure of individual sensors or actuators is generally easier to achieve with properly designed decentralized control systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Finco, M. V., Luyben, W. L., and Polleek, R. E. (1989). Control of distillation columns with low relative volatility. Ind. Eng. Chem. Res. 28, 75–83.CrossRefGoogle Scholar
  2. Finnerman, D. and Sandelin, P. (1986). M.Sc. Theses, Åbo Akademi, Åbo, Finland (in Swedish).Google Scholar
  3. Gustafsson, S. (1984). Unpublished work, Åbo Akademi.Google Scholar
  4. Häggblom, K. E. (1986). Tech. Lie. Thesis, Åbo Akademi (in Swedish).Google Scholar
  5. Häggblom, K. E. (1988). Consistent control structure modeling with application to distillation control. Ph.D. Thesis, Åbo Akademi.Google Scholar
  6. Häggblom, K. E. (1989). Reconciliation of process gains for distillation control structures. In Dynamics and Control of Chemical Reactors, Distillation Columns and Batch Processes, J. E. Rijnsdorp et al., eds. Oxford: Pergamon Press, pp. 259–266.Google Scholar
  7. Häggblom, K. E. and Waller, K. V. (1986). Relations between steady-state properties of distillation control system structures. In Dynamics and Control of Chemical Reactors and Distillation Columns, C. McGreavy, ed. Oxford: Pergamon Press, pp. 243–247.Google Scholar
  8. Häggblom, K. E. and Waller, K. V. (1988). Transformations and consistency relations of distillation control structures. AIChE J. 34, 1634–1648.CrossRefGoogle Scholar
  9. Häggblom, K. E. and Waller, K. V. (1989). Predicting properties of distillation control structures. Proceedings of the American Control Conference, Pittsburg, pp. 114–119.Google Scholar
  10. Häggblom, K. E. and Waller, K. V. (1990). Control structures for disturbance rejection and decoupling of distillation. AIChE J. 36, 1107–1113.CrossRefGoogle Scholar
  11. Häggblom, K. E. and Waller, K. V. (1991). Modeling of distillation control structures. Report 91–4, Process Control Lab., Åbo Akademi.Google Scholar
  12. Jacobsen, E. W. and Skogestad, S. (1991). Multiple steady states in ideal two-product distillation. AIChE J. 37, 499–511.CrossRefGoogle Scholar
  13. McAvoy, T. J. and Weischedel, K. (1981). A dynamic comparison of material balance versus conventional control of distillation columns. Proceedings IFAC World Congress, Kyoto, Japan, pp. 2773–2778.Google Scholar
  14. Nurmi, P. (1990). M.Sc. Thesis, Åbo Akademi (in Swedish).Google Scholar
  15. Rademaker, O., Rijnsdorp, J. E., and Maar-leveld, A. (1975). Dynamics and Control of Continuous Distillation Units. Amsterdam: Elsevier.Google Scholar
  16. Rijnsdorp, J. E. (1965). Interaction in two-variable control systems for distillation control: IL Application of theory. Automatica 3, 29–52.CrossRefGoogle Scholar
  17. Ryskamp, C. J. (1980). New strategy improves dual composition column control. Hydrocarbon Process. 59, (6) 51–59.Google Scholar
  18. Sandelin, P. M., Häggblom, K. E., and Waller, K. V. (1991a). A disturbance sensitivity parameter and its application to distillation control. Ind. Eng. Chem. Res. 29, 1182–1186.CrossRefGoogle Scholar
  19. Sandelin, P. M., Häggblom, K. E., and Waller, K. V. (1991b). Disturbance rejection properties of control structures at one-point control of a two-product distillation column. Ind. Eng. Chem. Res. 29, 1187–1193.CrossRefGoogle Scholar
  20. Sandelin, P. M., Toivonen, H. T., Österäs, M. and Waller, K. V. (1991). Robust multiobjective linear-quadratic control of distillation using low-order controllers. Chem, Eng. Sci. 46, 2815–2827.CrossRefGoogle Scholar
  21. Shinskey, F. G. (1984). Distillation Control, 2nd ed. New York: McGraw-Hill.Google Scholar
  22. Shinskey, F. G. (1985). Disturbance-rejection capabilities of distillation control systems. In Proceedings of the American Control Conference Boston, pp. 1072–1077.Google Scholar
  23. Shinskey, F. G. (1987). Personal communication.Google Scholar
  24. Shinskey, F. G. (1990). Personal communication.Google Scholar
  25. Skogestad, S. (1988). Disturbance rejection in distillation columns. Proceedings of Chem- data 88, Gothenberg, Sweden, June 13–15, pp. 365–371.Google Scholar
  26. Skogestad, S. and Morari, M. (1987). Control configuration selection for distillation columns. AIChEJ. 33, 1620–1635.CrossRefGoogle Scholar
  27. Skogestad, S. and Morari, M. (1988). Understanding the behavior of distillation columns. Ind. Eng. Chem. Res. 27, 1848–1862.CrossRefGoogle Scholar
  28. Takamatsu, T., Hashimoto, I., and Hashimoto, Y. (1982). Multivariable control system design of distillation columns system. Proceedings of PSE, Kyoto, Japan, Technical Session, pp. 243–252.Google Scholar
  29. Takamatsu, T., Hashimoto, I., and Hashimoto, Y. (1984). Dynamic decoupler sensitivity analysis and its application in distillation control. Preprints IFAC World Congress, Budapest, Hungary, Vol. III, pp. 98–103.Google Scholar
  30. Tsogas, A. and McAvoy, T. J. (1981). Dynamic simulation of a non-linear dual composition control scheme. Proceedings of the 2nd World Congress of Chemical Engineering, Vol. 5, pp. 365–369.Google Scholar
  31. Waller, K. V. (1986). Distillation column control structures. In Dynamics and Control of Chemieal Reaetors and Distillation Columns, C. McGreavy, ed. Oxford: Pergamon Press, pp. 1–10.Google Scholar
  32. Waller, K. V. (1990). Distillation: Control structures. In Systems & Control Encyclopedia, Supplementary Volume 7, M. G. Singh, ed. Oxford: Pergamon Press, pp. 174–181.Google Scholar
  33. Waller, K. V. and Finnerman, D. H. (1987). On using sums and differences to control distillation. Chem. Eng. Commun. 56, 253–258.CrossRefGoogle Scholar
  34. Waller, K. V., Finnerman, D. H., Sandelin, P. M., and Häggblom, K. E. (1986). On the difference between distillation column control structures. Report 86–2, Process Control Lab., Åbo Akademi.Google Scholar
  35. Waller, K. V., Häggblom, K. E., Sandelin, P. M., and Finnerman, D. H. (1988a). Disturbance sensitivity of distillation control structures. AIChEJ. 34, 853–858.CrossRefGoogle Scholar
  36. Waller, K. V., Finnerman, D. H., Sandelin, P. M., Häggblom, K. E., and Gustafsson, S. E. (1988b). An experimental comparison of four control structures for two-point control of distillation. Ind. Eng. Chem. Res. 27, 624–630.CrossRefGoogle Scholar
  37. Wood and Berry (1973). Chem. Eng. Sci 28, 1707–1717.CrossRefGoogle Scholar
  38. Yang, D. R., Seborg, D. E., and Mellichamp, D. A. (1991). Combined balance control structure for distillation columns. Ind. Eng. Chem. Res. 29 2159–2168.CrossRefGoogle Scholar
  39. Yang, D. R., Waller, K. V., Seborg, D. E. and Mellichamp, D. A. (1990). Dynamic structural transformations for distillation control configurations. AIChE J. 36, 1391–1402.CrossRefGoogle Scholar

Copyright information

© Van Nostrand Reinhold 1992

Authors and Affiliations

  • Kurt V. Waller
    • 1
  1. 1.Åbo AkademiFinland

Personalised recommendations