Control Structures, Consistency, and Transformations

  • Kurt E. Häggblom
  • Kurt V. Waller

Abstract

The operation of a multivariable process like a distillation column has to satisfy several control objectives. Typical objectives are to ensure the stability of the process, to produce specified products, and to optimize the operation economically. As the various objectives may be of quite different importance and normally require control actions at different time rates, it is usually desirable to decompose the full system into a number of subsystems according to the objectives.

Keywords

Enthalpy Steam Fractional Distillation Butanol Volatility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bequette, B. W. and Edgar, T. F. (1989). Non-interacting control system design methods in distillation. Comput. Chem. Eng. 13, 641–650.CrossRefGoogle Scholar
  2. Bristol, E. H. (1966). On a new measure of interaction for multivariable process control. IEEE Trans. Autom. Control AC-11,133–134.CrossRefGoogle Scholar
  3. Finco, M. v., Luyben, W. L., and Polleek, R. E. (1989). Control of distillation columns with low relative volatility. Ind. Eng. Chem. Res. 28, 75–83.CrossRefGoogle Scholar
  4. Grosdidier, P., Morari, M., and Holt, B. R. (1985). Closed-loop properties from steady- state gain information. Ind. Eng. Chem. Fundam. 24, 221–235.CrossRefGoogle Scholar
  5. Häggblom, K. E. (1986). Consistent modelling of partially controlled linear systems with application to continuous distillation (in Swedish). Lie. Tech. thesis, Åbo Akademi, Åbo.Google Scholar
  6. Häggblom, K. E. (1988a). Analytical relative gain expressions for distillation control structures. Dr. Tech. thesis. Part V, Åbo Akademi, Åbo.Google Scholar
  7. Häggblom, K. E. (1988b). Estimation of consistent control structure models. Dr. Tech. thesis. Part VI, Åbo Akademi, Åbo.Google Scholar
  8. Häggblom, K. E. (1989). Reconciliation of process gains for distillation control structures. In Dynamics and Control of Chemical Reactors, Distillation Columns and Batch Processes (J. E. Rijnsdorp et al., eds.). Oxford: Pergamon Press, pp. 259–266.Google Scholar
  9. Häggblom, K. E. (1991). Modeling of flow dynamics for control of distillation columns. Proceedings of the American Control Conference, Boston, pp. 785–790.Google Scholar
  10. Häggblom, K. E. (1992). A combined internal model and inferential control structure for distillation. Report 92–3, Process Control Laboratory, Åbol Akademi, Åbo.Google Scholar
  11. Häggblom, K. E. and Waller, K. V. (1986). Relations between steady-state properties of distillation control system structures. In Dynamics and Control of Chemical Reactors and Distillation Columns (C. McGreavy, ed.) Oxford: Pergamon Press, pp. 243–247.Google Scholar
  12. Häggblom, K. E. and Waller, K. V. (1988a). Transformations and consistency relations of distillation control structures.AIChE J. 34, 1634–1648.CrossRefGoogle Scholar
  13. Häggblom, K. E. and Waller, K. V. (1988b). Transformations between distillation control structures. Report 88–1, Process Control Laboratory, Åbo Akademi, Abo.Google Scholar
  14. Häggblom, K. E. and Waller, K. V. (1989). Predicting properties of distillation control structures. Proceedings of the American Control Conference, Pittsburgh, pp. 114–119.Google Scholar
  15. Häggblom, K. E. and Waller, K. V. (1990). Control structures for disturbance rejection and decoupling of distillation.AIChE J. 36, 1107–1113.CrossRefGoogle Scholar
  16. Häggblom, K. E. and Waller, K. V. (1991). Modeling of distillation control structures. Report 91–4, Process Control Laboratory, Åbo Akademi, Åbo.Google Scholar
  17. Hobbs, J. W. (1984). Control of a fractional distillation process. U.S. Patent 4,473,443, Sept. 25, 1984.Google Scholar
  18. Jafarey, A., McAvoy, T. J., and Douglas, J. M. (1979). Analytical relationships for the relative gain for distillation control. Ind. Eng. Chem. Fundam. 18, 181–187.CrossRefGoogle Scholar
  19. Koppel, L. B. (1985). Conditions imposed by process statics on multivariable process dynamics. AIChE J. 31, 70–75.CrossRefGoogle Scholar
  20. Koung, C. W. and MacGregor, J. F. (1991). Geometric analysis of the global stability of linear inverse-based controllers for bivariate nonlinear processes. Ind. Eng. Chem. Res. 30, 1171–1181.CrossRefGoogle Scholar
  21. Kridiotis, A. C. and Georgakis, C. (1986). Independent single-input-single-output control schemes for dual composition control of binary distillation columns. International Federation on Automatic Control Symposium, DYCORD, Bournemouth, p. 249–253.Google Scholar
  22. McAvoy, T. J. (1983). Interaction Analysis. Research Tringle Park: Instrument Society of America.Google Scholar
  23. McAvoy, T. J. and Weischedel, K. (1981). A dynamic comparison of material balance versus conventional control of distillation columns. Proceedings of the 8th International Federation of Automatic Control, World Congress, Kyoto, pp. 2773–2778.Google Scholar
  24. McDonald, K. A. and McAvoy, T. J. (1983). Decoupling dual composition controllers. 1. Steady state results. Proceedings of the American Control Conference, San Francisco, pp. 176–184.Google Scholar
  25. Ogunnaike, B. A. and Ray, W. H. (1979). Multivariable controller design for linear systems having multiple time delays. AIChE J. 25, 1043–1056.CrossRefGoogle Scholar
  26. Rademaker, O., Rijnsdorp, J. E., and Maarleveld, A. (1975). Dynamics and Control of Continuous Distillation Units. Amsterdam: Elsevier.Google Scholar
  27. Rosenbrock, H. H. (1962). The control of distillation columns. Trans. Inst. Chem. Eng. 40, 35–53.Google Scholar
  28. Ryskamp, C. J. (1980). New strategy improves dual composition column control. Hydrocarbon Processing 59(6), 51–59.Google Scholar
  29. Ryskamp, C. J. (1982). Explicit versus implicit decoupling in distillation control. In Chemical Process Control 2 (D. E. Seborg, and T. F. Edgar, eds.). New York: Engineering Foundation/AIChE, pp. 361–375.Google Scholar
  30. Sandelin, P. M., Häggblom, K. E., and Waller, K. V. (1991). Disturbance rejection properties of control structures at one-point control of a two-product distillation column. Ind. Eng. Chem. Res. 30, 1187–1193.CrossRefGoogle Scholar
  31. Shinskey, F. G. (1984). Distillation Control, 2nd ed. New York: McGraw-Hill.Google Scholar
  32. Shinskey, F. G. (1990). Personal communication.Google Scholar
  33. Skogestad, S., Lundström, P., and Jacobsen, E. W. (1990). Selecting the best distillation control configuration. AIChE J. 36, 753–764.CrossRefGoogle Scholar
  34. Skogestad, S. and Morari, M. (1987a). Control configuration selection for distillation columns. AIChE J. 33, 1620–1635.CrossRefGoogle Scholar
  35. Skogestad, S. and Morari, M. (1987b). A systematic approach to distillation column control. Inst. Chem. Eng. Symp. Ser. 104, A71-A86.Google Scholar
  36. Skogestad, S. and Morari, M. (1988). Understanding the dynamic behavior of distillation columns. Ind. Eng. Chem. Res. 27,1848–1862.CrossRefGoogle Scholar
  37. Smart, A. M. (1985). Recent advances in distillation control. Adv. Instrum. 40, 493–501.Google Scholar
  38. Takamatsu, T., Hashimoto, L, and Hashimoto, Y. (1982). Multivariable control system design of distillation columns system. Proceedings of the PSE, Kyoto, pp. 243–252.Google Scholar
  39. Takamatsu, T., Hashimoto, L, and Hashimoto, Y. (1987). Selection of manipulated variables to minimize interaction in multivariable control of distillation columns. Int. Chem. Eng. 27, 669–677.Google Scholar
  40. Tsogas, A. and McAvoy, T. J. (1981). Dynamic simulation of a non-linear dual composition control scheme. Proceedings of the 2nd World Congress of Chemical Engineering, Montreal, pp. 365–369.Google Scholar
  41. Van Kampen, J. A. (1965). Automatic control by chromatographs of the product quality of a distillation column. Convention in Advances in Automatic Control, Nottingham, England.Google Scholar
  42. Waller, K. V. and Finnerman, D. H. (1987). On using sums and differences to control distillation. Chem. Eng. Commun. 56, 253–258.CrossRefGoogle Scholar
  43. Waller, K. V., Finnerman, D. H., Sandelin, P. M., Häggblom, K. E., and Gustafsson, S. E. (1988a). An experimental comparison of four control structures for two-point control of distillation. Ind. Eng. Chem. Res. 27, 624–630.CrossRefGoogle Scholar
  44. Waller, K. V., Häggblom, K. E., Sandelin, P. M., and Finnerman, D. H. (1988b). Disturbance sensitivity of distillation control structures. AIChE J. 34, 853–858.CrossRefGoogle Scholar
  45. Waller, J. B. and Waller, K. V. (1991). Parametrization of a disturbance rejecting and decoupling control structure. Report 91–13, Process Control Laboratory, Åbo Akademi, Åbo.Google Scholar
  46. Weber, R. and Gaitonde, N. Y. (1982). Non-interactive distillation tower control. Proceedings of the American Control Conference, Arlington, VA, pp. 87–90.Google Scholar
  47. Wood, R. K. and Berry, M. W. (1973). Terminal composition control of a binary distillation column. Chem. Eng. Sci. 28, 1707–1717.CrossRefGoogle Scholar
  48. Yang, D. R., Waller, K. V., Seborg, D. E., and Mellichamp, D. A. (1990). Dynamic structural transformations for distillation control configurations. AIChE J. 36, 1391–1402.CrossRefGoogle Scholar
  49. Yang, D. R., Seborg, D. E., and Mellichamp, D. A. (1991). Combined balance control structure for distillation columns. Ind. Eng. Chem. Res. 30, 2159–2168.CrossRefGoogle Scholar

Copyright information

© Van Nostrand Reinhold 1992

Authors and Affiliations

  • Kurt E. Häggblom
    • 1
  • Kurt V. Waller
    • 1
  1. 1.Åbo AkademiFinland

Personalised recommendations