Plant Stress Responses: Discussion of Models for Racespecific Resistance

  • David N. Kuhn
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 22)

Abstract

Plants can respond actively to changes in their environment as well as resisting changes by constitutive barriers such as the cuticle and cell wall. In general, plants are in a dynamic equilibrium with the environment, constantly responding at the organ, tissue, cellular as well as the transcriptional, translational and enzyme level to environmental changes. When these changes are extreme or when the environment damages or weakens the plant’s ability to grow and reproduce, we term this stress. Biotic stress comes from another living organism (bacterial or fungal pathogen, insect or herbivore). Abiotic stress is caused by environmental extremes (heat, cold, water) or compounds present at toxic levels (heavy metals, ozone).

Keywords

Ozone Lignin Pseudomonas Phenylalanine Glucan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dixon, R.A., P.M. Dey, C.J. Lamb. 1983. Phytoalexins: enzymology and molecular biology. In Advances in Enzymology, Related Areas in Molecular Biology. (A. Meister, ed.), Vol. 55, John Wiley and Sons, Inc., New York, 1–136.Google Scholar
  2. 2.
    Bailey, J.A., J.W. Mansfield, eds. 1982. In Phytoalexins. John Wiley and Sons, Inc., New York, 334 pp.Google Scholar
  3. 3.
    Hagmann, M.-L., H. Grisebach. 1984. Enzymatic rearrangement of flavanone to isoflavone. FEBS Lett. 175: 199–202.CrossRefGoogle Scholar
  4. 4.
    Hagmann, M.-L., W. Heller, H. Grisebach. 1984. Induction of phytoalexin synthesis in soybean. Sterospecific 3,9-dihydroxypterocarpan 6a-hydroxylase from elicitor-induced soybean cell cultures. Eur. J. Biochem. 142: 127–131.PubMedCrossRefGoogle Scholar
  5. 5.
    Zahringer, U., J. Ebel, L.J. Mulheirn, R.L. Lyne, H. Grisebach. 1979. Induction of phytoalexin synthesis in soybean: dimethylalylpyrophosphate: trihydroxypterocarpan dimethylallyl transferase from elicitor-induced cotyledons. FEBS Lett. 101: 90–92.PubMedCrossRefGoogle Scholar
  6. 6.
    Chappell, J., K. Hahlbrock. 1984. Transcription of plant defense genes in response to UV light or fungal elicitor. Nature 311: 76–78.CrossRefGoogle Scholar
  7. 7.
    Edwards, K., C.L. Cramer, G.P. Bolwell, R.A. Dixon, W. Schuch, C.J. Lamb. 1985. Rapid transient induction of phenylalanine ammonia-lyase mRNA in elicitor treated bean cells. Proc. Natl. Acad. Sci. USA 82: 6731–6735.PubMedCrossRefGoogle Scholar
  8. 8.
    Kreuzaler, F., H. Ragg, E. Fautz, D.N. Kuhn, K. Hahlbrock. 1983. UV induction of chalcone synthase mRNA in cell suspension cultures of Petroselinum hortense. Proc. Natl. Acad. Sci. USA 80: 2591–2593.PubMedCrossRefGoogle Scholar
  9. 9.
    Ryder, T.B., C.L. Cramer, J.N. Bell, M.P. Robbins, R.A. Dixon, C.J. Lamb. 1984. Elicitor rapidly induces chalcone synthase mRNA in Phaseolus vulgaris cells at the onset of the phytoalexin defense response. Proc. Natl. Acad. Sci. USA 81: 5724–5728.PubMedCrossRefGoogle Scholar
  10. 10.
    Roby, D., A. Toppan, M.T. Esquerre-Tugaye. 1985. Cell surfaces in plant-microorganism interactions: 5. Elicitors of fungal and of plant origin trigger the synthesis of ethylene and of cell wall hydroxy-proline-rich glycoprotein in plants. Plant Physiol. 77: 700–704.PubMedCrossRefGoogle Scholar
  11. 11.
    Keen, N.T., J.D. Paxton. 1975. Coordinate production of hydroxyphaseollin and the yellow-fluorescent compound PAK in soybeans resistant to Phytophthora megasperma var. sojae. Phytopathology 65: 635–637.CrossRefGoogle Scholar
  12. 12.
    Bruegger, B.B., N.T. Keen. 1979. Specific elicitors of glyceollin accumulation in the Pseudomonas glycinea-soybean host-parasite system. Physiol. Plant Pathol. 15: 69–78.CrossRefGoogle Scholar
  13. 13.
    Showalter, A.M., J.N. Bell, C.L. Cramer, J.A. Bailey, J.E. Varner, C.J. Lamb. 1985. Accumulation of hydroxyproline-rich glycoprotein mRNAs in response to fungal elicitor and infection. Proc. Natl. Acad. Sci. USA 82: 6551–6555.PubMedCrossRefGoogle Scholar
  14. 14.
    Tomiyama, K. 1982. Hypersensitive cell death: its significance and cell physiology. In Plant Infection: The Physiological and Biochemical Basis. (Y. Asada et al., eds.), Japan Scientific Society Press, Tokyo/Springer-Verlag, Berlin, pp. 329–344.Google Scholar
  15. 15.
    Kuhn, D.N. 1987. Plant responses to stresses at the molecular level, In Plant-Microbe Interactions. (T. Kosuge, E.W. Nester, eds.), Vol. 2, Macmillan Publishing Company, New York, pp. 415–441.Google Scholar
  16. 16.
    Grill, E., E.-L. Winnacker, M.H. Zenk. 1985. Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230: 674–676.PubMedCrossRefGoogle Scholar
  17. 17.
    Ryan, C.A. 1984. Systematic responses to wounding. In T. Kosuge, E.W. Nester, eds., op. cit. Reference 15, Vol. 1, pp. 307–321.Google Scholar
  18. 18.
    Flor, A.H. 1947. Host-parasite interactions in flax rust — its genetics and other implications. Phytopathology 45: 680–685.Google Scholar
  19. 19.
    Peters, N.K., J.W. Frost, S.R. Long. 1986. A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233: 977–980.PubMedCrossRefGoogle Scholar
  20. 20.
    Djordjevic, M.A., J.W. Redmond, M. Batley, B.G. Rolfe. 1987. Clovers secrete specific phenolic compounds which either stimulate or repress nod gene expression in Rhizobium trifolii. EMBO J. 6: 1173–1179.PubMedGoogle Scholar
  21. 21.
    Cramer, C.L., T.B. Ryder, J.N. Bell, C.J. Lamb. 1985. Rapid switching of plant gene expression induced by fungal elicitor. Science 227: 1240–1243.CrossRefGoogle Scholar
  22. 22.
    Lagace, L., T. Chandra, S.L.C. Woo, R.A. Means. 1983. Identification of multiple species of calmodulin messenger RNA using a full length complementary DNA. J. Biol. Chem. 258: 1684–1688.PubMedGoogle Scholar
  23. 23.
    Wiborg, O., M.S. Pedersen, A. Wind, L.E. Berglund, K.A. Marcker, J. Vuust. 1985. The human ubiquitin multigene family: some genes contain multiple directly repeated ubiquitin coding sequences. EMBO J. 4: 755–759.PubMedGoogle Scholar
  24. 24.
    Chen, J., J.E. Varner. 1985. Isolation and characterization of cDNA clones for carrot extensin and a proline-rich 33-kDa protein. Proc. Natl. Acad. Sci. USA 82: 4399–4403.PubMedCrossRefGoogle Scholar
  25. 25.
    Wilson, L.G., J.C. Fry. 1986. Extensin — a major cell wall glycoprotein. Plant Cell Environ. 9: 239–260.Google Scholar
  26. 26.
    Paxton, J.D. 1983. Phytophthora root and stem rot of soybean: a case study. In Biochemical Plant Pathology. (J.S. Callow, ed.), Wiley and Sons, Inc., New York, pp. 19–29.Google Scholar
  27. 27.
    Schmitthenner, A.F. 1985. Problems and progress in controlling Phytophthora root rot of soybean. Plant Dis. 69: 362–368.CrossRefGoogle Scholar
  28. 28.
    Athow, K.L., F.A. Laviolette. 1984. Breeding soybeans for race-specific Phytophthora resistance. Proceedings 13th Soybean Seed Research Conference, American Seed Trade Assoc., pp. 12-21.Google Scholar
  29. 29.
    Layton, A.C., K.L. Athow, F.A. Laviolette. 1986. A new physiological race of Phytophthora megasperma f.sp. glycinea. Plant Dis. 70: 500–501.CrossRefGoogle Scholar
  30. 30.
    Layton, A.C., D.N. Kuhn. 1988. Heterokaryon formation by protoplast fusion of drug resistant mutants in Phytophthora megasperma f.sp. glycinea. Experimental Mycology (in press).Google Scholar
  31. 31.
    Layton, A.C., D.N. Kuhn. 1988. The virulence of interracial heterokaryons of Phytophthora megasperma f.sp. glycinea. Phytopathology (in press).Google Scholar
  32. 32.
    Miller, S.A., D.P. Maxwell. 1982. Light microscope observations of susceptible, host resistant and nonhost resistant interactions of alfalfa with Phytophthora megasperma. Can. J. Bot. 62: 109–116.CrossRefGoogle Scholar
  33. 33.
    Hahn, M., A. Bohnert, H. Grisebach. 1985. Quantitative localization of the phytoalexin glyceollin I in relation to fungal hyphae in soybean roots infected with Phytophthora megasperma f.sp. glycinea. Plant Physiol. 77: 591–601.PubMedCrossRefGoogle Scholar
  34. 34.
    Beagle-Ristaino, J.E., J.F. Rissler. 1983. Histopathology of susceptible and resistant soybean roots inoculated with zoospores of Phytophthora megasperma f.sp. glycinea. Phytopathology 73: 590–595.CrossRefGoogle Scholar
  35. 35.
    Bonhoff, A., R. Loyal, J. Ebel, H. Grisebach. 1986. Race: cultivar-specific induction of enzymes related to phytoalexin biosynthesis in soybean roots following infection with Phytophthora megasperma f.sp. glycinea. Arch. Biochem. Biophys. 246: 149–154.PubMedCrossRefGoogle Scholar
  36. 36.
    Fahy, P.C., A.B. Lloyd. 1983. Pseudomonas: the fluorescent pseudomonads. In Plant Bacterial Disease. (P.C. Fahy, G.J. Persley, eds.), Academic Press, New York, pp. 141–188.Google Scholar
  37. 37.
    Staskawicz, B.J., D. Dahlbeck, N. Keen. 1984. Cloned avirulence gene of Pseudomonas syringae pv. glycinea determines race-specific incompatibility on Glycine max. Proc. Natl. Acad. Sci. USA 81: 6024–6028.PubMedCrossRefGoogle Scholar
  38. 38.
    Keen, N.T., B.W. Kennedy. 1974. Hydroxyphaseollin and related isoflavonoids in the hypersensitive reaction of soybeans to Pseudomonas glycinea. Physiol. Plant Pathol. 4: 173–185.CrossRefGoogle Scholar
  39. 39.
    Ryder, T.B., S.A. Hedrick, J.N. Bell, X. Liang, S.D. Clouse, C.J. Lamb. 1987. Organization and differential activation of a gene family encoding the plant defense enzyme chalcone synthase in Phaseolus vulgaris. Mol. Gen. Genet, (in press).Google Scholar
  40. 40.
    Borner, H., H. Grisebach. 1982. Enzyme induction in soybean infected by Phytophthora megasperma f.sp. glycinea. Arch. Biochem. Biophys. 217: 65–71.PubMedCrossRefGoogle Scholar
  41. 41.
    Schmelzer, E., H. Borner, H. Grisebach, J. Ebel, K. Hahlbrock. 1984. Phytoalexin synthesis in soybean (Glycine max). Similar time courses of mRNA induction in hypocotyls infected with a fungal pathogen and in cell cultures treated with fungal elicitor. FEBS Lett. 172: 59–63.CrossRefGoogle Scholar
  42. 42.
    Ralton, J.E., M.G. Smart, A.E. Clarke. 1987. Recognition and infection processes in plant pathogen interactions. In T. Kosuge, E.W. Nester, eds., op. cit. Reference 15, Vol. 2, pp. 217–252.Google Scholar
  43. 43.
    Ellingboe, A.H. 1982. Genetical aspects of active defense. In Active Defense Mechanisms in Plants. (R.K.S. Wood, ed.), Plenum Press, New York, pp. 179–192.CrossRefGoogle Scholar
  44. 44.
    Yoshikawa, M. 1983. Macromolecules, recognition, and the triggering of resistance. In J.A. Callow, ed., op. cit. Reference 26, pp. 267–298.Google Scholar
  45. 45.
    Vanderplank, J.E. 1982. Host-pathogen interactions in plant disease. Chapter 6, The gene for gene hypothesis. Academic Press, Inc., New York.Google Scholar
  46. 46.
    Keen, N.T. 1982. Phytoalexins-progress in regulation of their accumulation in gene-for-gene interactions. In Y. Asad et al., eds., op. cit. Reference 14, pp. 281-299.Google Scholar
  47. 47.
    Darvill, A.G., P. Albersheim. 1984. Phytoalexins and their elicitors — a defense against microbial infection in plants. Annu. Rev. Plant Physiol. 35: 243–275.CrossRefGoogle Scholar
  48. 48.
    Keen, N.T., M. Yoshikawa. Physiology of disease and nature of resistance to Phytophthora. In Phytophthora, its biology, taxonomy, ecology and pathology. (D.C. Erwin, S. Bartnicki-Garcia, P.H. Tsao, eds.), American Phytopathological Society, St. Paul, Minnesota, pp. 289-301.Google Scholar
  49. 49.
    Chappell, J., K. Hahlbrock, T. Boller. 1984. Rapid induction of ethylene biosynthesis in cultured parsley cells by fungal elicitor and its relationship to the induction of phenylalanine ammonialyase. Planta 161: 475–480.CrossRefGoogle Scholar
  50. 50.
    Kimpel, J.A., T. Kosuge. 1985. Metabolic regulation during glyceollin biosynthesis in green soybean hypocotyls. Plant Physiol. 77: 1–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Murch, R.S., J.D. Paxton. 1980. Rhizosphere salinity and phytoalexin accumulation in soybean. Plant Soil 54: 163–167.CrossRefGoogle Scholar
  52. 52.
    Chamberlain, D.W. 1972. Heat-induced susceptibility to nonpathogens and cross-protection against Phytophthora megasperma var. sojae in soybean. Phytopathology 62: 645–646.CrossRefGoogle Scholar
  53. 53.
    Sinn, E., W. Muller, P. Pattengale, I. Tepler, R. Wallace, P. Leder. 1987. Coexpression of MMTV/ v-Ha-ras and MMTV/C-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 49: 477–485.CrossRefGoogle Scholar
  54. 54.
    Somssich, I.E., E. Schmelzer, J. Bollmann, K. Hahlbrock. 1986. Rapid activation by fungal elicitor of genes encoding “pathogenesisrelated” proteins in cultured parsley cells. Proc. Natl. Acad. Sci. USA 83: 2427–2430.PubMedCrossRefGoogle Scholar
  55. 55.
    Lawton, M.A., C.J. Lamb. 1987. Transcriptional activation of plant defense genes by fungal elicitor, wounding and infection. Mol. Cell. Biol. 7: 335–341.PubMedGoogle Scholar
  56. 56.
    Dixon, R.A., C. Gerrish, C.J. Lamb, M.P. Robbins. 1983. Elicitor-mediated induction of chalcone isomerase in Phaseolus vulgaris cell suspension cultures. Planta 159: 561–569.CrossRefGoogle Scholar
  57. 57.
    Lawton, M.A., R.A. Dixon, C.J. Lamb. 1980. Elicitor modulation of the turnover of L-phenylalanine ammonia-lyase in french bean cell suspension cultures. Eur. J. Biochem. 129: 593–601.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • David N. Kuhn
    • 1
  1. 1.Department of BiochemistryPurdue UniversityWest LafayetteUSA

Personalised recommendations