Initial Interactions Between Plant Cells and Agrobacterium Tumefaciens in Crown Gall Tumor Formation

  • Gerard A. Cangelosi
  • Eugene W. Nester
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 22)


Crown gall tumors on dicotyledonous plants are formed by infection of wounded tissue with the bacterial plant pathogen Agrobacterium tumefaciens. Infection of the plant cells does not occur by the bacterial cells themselves, but by a discreet portion of a bacterial, tumor-inducing (Ti) plasmid (Fig. 1). This segment of DNA, termed T-DNA, is found integrated into the nuclear DNA of cloned plant tumor tissue.1,2,3 Expression of T-DNA genes alters the hormone balance of the plant cells,4,5,6 resulting in the tumor phenotype. T-DNA gene products also direct the transformed plant cells to produce opines, unusual amino acids which are utilized by the Agrobacteria.7


Plant Cell Plant Cell Wall Agrobacterium Tumefaciens Crown Gall Pinto Bean 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chilton, M.-D., M.H. Drummond, D.J. Merlo, D. Skiaky, A.L. Montoya, M.P. Gordon, E.W. Nester. 1977. Stable incorporation of plasmid DNA into higher cells: the molecular basis of crown gall tumorigenesis. Cell 11: 263–271.PubMedCrossRefGoogle Scholar
  2. 2.
    Thomashow, M.F., R. Nutter, A.L. Montagu, M.P. Gordon, E.W. Nester. 1980. Integration and organization of Ti-plasmid sequences in crown gall tumors. Cell 19: 729–739.PubMedCrossRefGoogle Scholar
  3. 3.
    Zambryski, P., M. Holsters, K. Kruger, A. Kepicker, J. Schell, M. Van Montagu, H.M. Goodman. 1980. Tumor DNA structure in plant cells transformed by A. tumefaciens. Science 209: 1385–1391.PubMedCrossRefGoogle Scholar
  4. 4.
    Akiyoshi, D.E., R.O. Morris, R. Hinz, B.S. Mischke, T. Kosuge, D.J. Garfinkel, M.P. Gordon, E.W. Nester. 1982. Cytokinin/auxin balance in crown gall tumors is regulated by specific loci in the T-DNA. Proc. Natl. Acad. Sci. USA 80: 407–411.CrossRefGoogle Scholar
  5. 5.
    Amasino, R.M., C.O. Miller. 1982. Hormonal control of tobacco crown gall tumor morphology. Plant Physiol. 69: 389–392.PubMedCrossRefGoogle Scholar
  6. 6.
    Willmitzer, L., G. Simons, J. Schell. 1982. The T-DNA in octupine crown gall codes for seven well-defined polyadenylated transcripts. Embo J. 1: 139–146.PubMedGoogle Scholar
  7. 7.
    Bomhoff, G.H., P.M. Klapwijk, H.C.M. Rester, R.A. Schilperoort, J.P. Hernalsteens, J. Schell. 1976. Octopine and nopaline synthesis and breakdown is genetically controlled by a plasmid of Agrobacterium tumefaciens. Mol. Gen. Genet. 145: 177–181.PubMedCrossRefGoogle Scholar
  8. 8.
    Klee, H.J., F.F. White, V.N. Iyer, M.P. Gordon, E.W. Nester. 1983. Mutational analysis of the vir region of an Agrobacterium tumefaciens Ti plasmid. J. Bacteriol. 153: 878–883.PubMedGoogle Scholar
  9. 9.
    Lundquist, R.C., T.J. Close, C.I. Kado. 1984. Genetic complementation of Agrobacterium tumefaciens Ti plasmid mutants in the virulence region. Mol. Gen. Genet. 193: 1–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Horsch, R.B., H.J. Klee, S. Stachel, S.C. Winans, E.W. Nester, S.G. Rogers, R.T. Fraley. 1986. Analysis of Agrobacterium tumefaciens virulence mutants in leaf discs. Proc. Natl. Acad. Sci. USA 82: 2571–2575.CrossRefGoogle Scholar
  11. 11.
    Yanofsky, M.F., S. Porter, C. Young, L. Albright, M.P. Gordon, E.W. Nester. 1986. The virD operon of Agrobacterium tumefaciens encodes a site-specific endonuclease. Cell 47: 471–477.PubMedCrossRefGoogle Scholar
  12. 12.
    An, G., B.D. Watson, S. Stachel, M.P. Gordon, E.W. Nester. 1985. New cloning vehicles for transformation of higher plants. EMBO J. 4: 277–284.PubMedGoogle Scholar
  13. 13.
    Zambryski, P., H. Joos, C. Genetello, J. Leemans, M. Van Montagu, J. Schell. 1983. Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J. 2: 2143–2150.PubMedGoogle Scholar
  14. 14.
    De Cleene, M., J. De Ley. 1976. The host range of crown gall. Bot. Rev. 42: 389–466.CrossRefGoogle Scholar
  15. 15.
    De Cleene, M. 1985. The susceptibility of monocotyledons to Agrobacterium tumefaciens. Phytopath. Z. 113: 81–89.CrossRefGoogle Scholar
  16. 16.
    Lippincott, B.B., J.A. Lippincott. 1969. Bacterial attachment to a specific wound site as an essential stage in tumor initiation by Agrobacterium tumefaciens. J. Bacteriol. 97: 620–628.PubMedGoogle Scholar
  17. 17.
    Glogowski, W., A.G. Galsky. 1978. Agrobacterium tumefaciens site attachment as a necessary prerequisite for crown gall tumor formation of potato discs. Plant Physiol. 61: 1031–1033.PubMedCrossRefGoogle Scholar
  18. 18.
    Tanimoto, E., C. Douglas, W. Halperin. 1979. Factors affecting crown gall tumorigenesis in Jerusalem artichoke (Helianthus tuberosum L.). Plant Physiol. 63: 989–994.PubMedCrossRefGoogle Scholar
  19. 19.
    Krens, F.A., L. Molendijk, G.J. Wullems, R.A. Schilperoort. 1985. The role of bacterial attachment in the transformation of cell-wall-regenerating tobacco protoplasts by Agrobacterium tumefaciens. Planta 166: 300–308.CrossRefGoogle Scholar
  20. 20.
    Hawes, M.C., S.G. Pueppke. 1986. Correlation between binding of Agrobacterium tumefaciens by root cap cells and susceptibility of plants to crown gall. Plant Cell Reports, in press.Google Scholar
  21. 21.
    Matthysse, A.G., K.V. Holmes, R.H.G. Gurlitz. 1982. Binding of Agrobacterium tumefaciens to carrot protoplasts. Physiol. Plant Pathol. 20: 27–33.CrossRefGoogle Scholar
  22. 22.
    Lippincott, J.A., B.B. Lippincott. 1977. Tumor induction by Agrobacterium involves attachment of the bacterium to a site on the host plant cell wall. Plant Physiol. 59: 388–390.PubMedCrossRefGoogle Scholar
  23. 23.
    Rao, S.S., B.B. Lippincott, J.A. Lippincott. 1982. Agrobacterium adherence involves the pectin portion of the host cell wall and is sensitive to the degree of pectin methylation. Physiol Plant Pathol. 56: 374–380.Google Scholar
  24. 24.
    Pueppke, S.G., U.K. Benny. 1983. Agrobacterium tumorigenesis in potato: effect of added Agrobacterium lipopolysaccharides and the degree of methylation of added plant galacturonase. Physiol. Plant Pathol. 23: 439–446.CrossRefGoogle Scholar
  25. 25.
    Neff, N.T., A.N. Binns. 1985. Agrobacterium tumefaciens interaction with suspension-cultures tomato cells. Plant Physiol. 77: 35–42.PubMedCrossRefGoogle Scholar
  26. 26.
    Matthysse, A.G., R.H.G. Gurlitz. 1982. Plant cell range for attachment of Agrobacterium tumefaciens to tissue culture cells. Physiol. Plant Pathol. 21: 381–387.CrossRefGoogle Scholar
  27. 27.
    Douglas, C., W. Halperin, M. Gordon, E.W. Nester. 1985. Specific attachment of Agrobacterium tumefaciens to bamboo cells in suspension cultures. J. Bacteriol. 161: 764–766.PubMedGoogle Scholar
  28. 28.
    Hooykass-Van Slogteren, G.M.S., P.J. Hookaas, R.A. Schilperoort. 1984. Expression of Ti plasmid genes in monocotyledonous plants infected with Agrobacterium tumefaciens. Nature 311: 763–764.CrossRefGoogle Scholar
  29. 29.
    Schafer, W., A. Gorz, G. Kahl. 1987. T-DNA integration and expression in a monocot crop plant after induction of Agrobacterium. Nature 327: 529–532.CrossRefGoogle Scholar
  30. 30.
    Whatley, M.H., J.S. Bodwin, B.B. Lippincott, J.A. Lippincott. 1976. Role for Agrobacterium cell envelope lipopolysaccharide in infection site attachment. Inf. Immunol. 13: 1080–1083.Google Scholar
  31. 31.
    New, D.B., J.J. Scott, C.R. Ireland, S.K. Farrand, B.B. Lippincott, J.A. Lippincott. 1983. Plasmid pSa causes loss of LPS-mediated adherence in Agrobacterium. J. Gen. Microbiol. 129: 3657–3660.Google Scholar
  32. 32.
    Matthysse, A.G., P.M. Wyman, K.V. Holmes. 1978. Plasmid dependent attachment of Agrobacterium tumefaciens to plant tissue culture cells. Inf. Immunol. 22: 516–522.Google Scholar
  33. 33.
    Matthysse, A.G. 1987. Characterization of non-attaching mutants of Agrobacterium tumefaciens. J. Bacteriol. 169: 313–323.PubMedGoogle Scholar
  34. 34.
    Whatley, M.H., B.B. Lippincott, J.A. Lippincott. 1976. Site attachment in Agrobacterium infection involves bacterial “O-antigen”. Amer. Soc. Microbiol. Absts. Ann. Meeting, B8.Google Scholar
  35. 35.
    Banerjee, D., M. Basa, I. Choudhury, G.C. Chaterjee. 1981. Cell surface carbohydrates of Agrobacterium tumefaciens involved in adherence during crown gall tumor initiation. Biochem. Biophys. Res. Commun. 100: 1348–1388.CrossRefGoogle Scholar
  36. 36.
    Whatley, M.H., N. Hunter, M.A. Cantrell, C. Hendrick, K. Keegstra, L. Sequeira. 1980. Lipopolysaccharide composition of the wilt pathogen, Pseudomonas solanacearum: correlation with hypersensitive response in tobacco. Plant Physiol. 65: 557–559.PubMedCrossRefGoogle Scholar
  37. 37.
    Baker, C.J., M.J. Neilson, L. Sequeira, K.G. Keegstra. 1984. Chemical characterization of the lipopolysaccharide of Pseudomonas solanacearum. Appl. Environ. Microbiol. 47: 1096–1100.PubMedGoogle Scholar
  38. 38.
    Whatley, M.H., J.B. Margot, J. Schell, B.B. Lippincott, J.A. Lippincott. 1978. Plasmid and chromosomal determination of Agrobacterium adherence specificity. J. Gen. Microbiol. 107: 395–398.CrossRefGoogle Scholar
  39. 39.
    Douglas, C.J., W. Halperin, E.W. Nester. 1982. Agrobacterium tumefaciens mutants affected in attachment to plant cells. J. Bacteriol. 152: 1265–1275.PubMedGoogle Scholar
  40. 40.
    Douglas, C.J., R.J. Staneloni, R.A. Rubin, E.W. Nester. 1985. Identification and genetic analysis of an Agrobacterium tumefaciens chromosomal virulence region. J. Bacteriol. 161: 850–860.PubMedGoogle Scholar
  41. 41.
    Cangelosi, G.A., L. Hung, V. Puvanesarajah, G. Stacey, D.A. Ozga, J.A. Leigh, E.W. Nester. 1987. Common loci for Agrobacterium tumefaciens and Rhizobium meliloti exopolysaccharide synthesis and their roles in plant interactions. J. Bacteriol. 169: 2086–2091.PubMedGoogle Scholar
  42. 42.
    Matthysse, A.G. 1983. Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection. J. Bacteriol. 154: 906–915.PubMedGoogle Scholar
  43. 43.
    Krieg, N.R., J.G. Holt, eds. 1984. Bergey’s Manual of Systematic Bacteriology. Vol. 1, Williams and Wilkins, Baltimore, Maryland.Google Scholar
  44. 44.
    Dylan, T., L. Ielpi, S. Stanfield, L. Kashyap, C. Douglas, M. Yanofsky, E. Nester, D.R. Helinski, G. Ditta. 1986. Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes in Agrobacterium tumefaciens. Proc. Natl. Acad. Sci. USA 83: 4403–4407.PubMedCrossRefGoogle Scholar
  45. 45.
    Hisamatsu, M., J. Abe, A. Amemura, T. Harada. 1980. Structural elucidation of succinoglycan and related polysaccharides from Agrobacterium and Rhizobium by fragmentation with two special β-D-glycanases and methylation analysis. Agric. Biol. Chem. 44: 1049–1055.CrossRefGoogle Scholar
  46. 46.
    Dell, A., W.S. York, M. McNeil, A.G. Darvil, P. Albersheim. 1983. The cyclic structure of β-D-(1,2)-linked D-glucans secreted by Rhizobia and Agrobacteria. Carbohydr. Res. 117: 185–200.CrossRefGoogle Scholar
  47. 47.
    Zevenhuizen, L.P.T.M., A.R.W. Van Neerven. 1983. (1,2)-β-D-glucan and acidic oligosaccharides produced by Rhizobium meliloti. Carbohydr. Res. 118: 127–134.CrossRefGoogle Scholar
  48. 48.
    Puvanesarajah, V., F.M. Schell, G. Stacey, C.J. Douglas, E.W. Nester. 1985. A role for 2-linked-β-D-glucan in the virulence of Agrobacterium tumefaciens. J. Bacteriol. 164: 102–106.PubMedGoogle Scholar
  49. 49.
    Geremia, R.A., S. Cavaignac, A. Zorreguita, N. Toro, J. Olivares, R.A. Ugalde. 1987. A Rhizobium meliloti mutant that forms ineffective pseudonodules in alfalfa produces exopolysaccharide but fails to form β-(1,2) glucan. J. Bacteriol. 169: 880–884.PubMedGoogle Scholar
  50. 50.
    Zorreguieta, A., R.A. Ugalde. 1986. Formation in Rhizobium and Agrobacterium spp. of a 235-kilodalton protein intermediate in β-D-(1,2) glucan synthesis. J. Bacteriol. 167: 947–951.PubMedGoogle Scholar
  51. 51.
    Zorreguieta, A., R.A. Ugalde, L.F. LeLoir. 1985. An intermediate in cyclic 1,2-β-glucan biosynthesis. Biochem. Biophys. Res. Commun. 126: 352–357.PubMedCrossRefGoogle Scholar
  52. 52.
    Finan, T.M., A.M. Hirsch, J.A. Leigh, E. Johansen, G.A. Kuldau, S. Deegan, G.C. Walker, E.R. Signer. 1985. Symbiotic mutants of Rhizobium meliloti that uncouple plant from bacterial differentiation. Cell 40: 869–877.PubMedCrossRefGoogle Scholar
  53. 53.
    Leigh, J.A., E.R. Signer, G.C. Walker. 1985. Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. Proc. Natl. Acad. Sci. USA 82: 6231–6235.PubMedCrossRefGoogle Scholar
  54. 54.
    Kennedy, E.P. 1982. Osmotic regulation and biosynthesis of membrane-derived oligosaccharides in Escherichia coli. Proc. Natl. Acad. Sci. USA 79: 1092–1095.PubMedCrossRefGoogle Scholar
  55. 55.
    Miller, K.J., E.P. Kennedy, V.N. Reinhold. 1986. Osmotic adaptation by gram-negative bacteria: possible role for periplasmic oligosaccharides. Science 231: 48–51.PubMedCrossRefGoogle Scholar
  56. 56.
    Matthysse, A.G., K.V. Holmes, R.H.G. Gurlitz. 1981. Elaboration of cellulose fibrils by Agrobacterium tumefaciens during attachment to carrot cells. J. Bacteriol. 145: 583–595.PubMedGoogle Scholar
  57. 57.
    Long, S.R. 1984. Genetics of Rhizobium nodulation. In Plant-Microbe Interactions: Molecular and Genetic Perspectives. (T. Kosuge, E.W. Nester, eds.), Vol. 1, Macmillan, New York, pp. 265–306.Google Scholar
  58. 58.
    Hooykaas, P.J.J., M. Hofker, H. Den Dulk-Ras, R.A. Schilperoort. 1984. A comparison of virulence determinant in an octopine Ti plasmid, a nopaline Ti plasmid and an Ri plasmid by complementation analysis of Agrobacterium tumefaciens mutants. Plasmid 11: 195–205.PubMedCrossRefGoogle Scholar
  59. 59.
    Klee, H.J., F.F. White, V.N. Iyer, M.P. Gordon, E.W. Nester. 1983. Mutational analysis of the vir region of an Agrobacterium tumefaciens Ti plasmid. J. Bacteriol. 153: 878–883.PubMedGoogle Scholar
  60. 60.
    Stachel, S.E., E.W. Nester. 1986. The genetic and transcriptional organization of the vir region of the A6 Ti plasmid of Agrobacterium tumefaciens. EMBO J. 5: 1445–1454.PubMedGoogle Scholar
  61. 61.
    Stachel, S.E., E.W. Nester, P. Zambryski. 1986. A plant cell factor induced Agrobacterium tumefaciens vir gene expression. Proc. Natl. Acad. Sci. USA 83: 379–383.PubMedCrossRefGoogle Scholar
  62. 62.
    Otten, L., H. De Greve, J. Leemans, R. Hain, P. Hooykaas, J. Schell. 1984. Restoration of virulence of Vir region mutants of Agrobacterium tumefaciens strain B6S3 by coinfection with normal and mutant Agrobacterium strains. Mol. Gen. Genet. 195: 159–163.CrossRefGoogle Scholar
  63. 63.
    Stachel, S.E., E. Messens, M. Van Montagu, P. Zambryski. 1985. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318: 624–629.CrossRefGoogle Scholar
  64. 64.
    Bolton, G.W., E.W. Nester, M.P. Gordon. 1986. Plant phenolic compounds induce expression of the Agrobacterium tumefaciens loci needed for virulence. Science 232: 983–985.PubMedCrossRefGoogle Scholar
  65. 65.
    Mulligan, J., S. Long. 1985. Induction of Rhizobium meliloti nodC expression by plant exudate requires nodD. Proc. Natl. Acad. Sci. USA 82: 6609–6613.PubMedCrossRefGoogle Scholar
  66. 66.
    Peters, N.K., J.W. Frost, S.R. Long. 1986. A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233: 977–980.PubMedCrossRefGoogle Scholar
  67. 67.
    Stachel, S.E., P.C. Zambryski. 1986. virA and virG control the plant-induced activation of the T-DNA transfer process of Agrobacterium tumefaciens. Cell 46: 325–333.PubMedCrossRefGoogle Scholar
  68. 68.
    Winans, S.C., P.R. Ebert, S.E. Stachel, M.P. Gordon, E.W. Nester. 1986. A gene essential for Agrobacterium virulence is homologous with a family of positive regulatory loci. Proc. Natl. Acad. Sci. USA 83: 8278–8282.PubMedCrossRefGoogle Scholar
  69. 69.
    Leroux, B., M.F. Yanofsky, S.C. Winans, J.E. Ward, S.F. Ziegler, E.W. Nester. 1987. Characterization of the virA locus of Agrobacterium tumefaciens: a transcriptional regulator and host range determinant. Embo J. 6: 849–856.PubMedGoogle Scholar
  70. 70.
    Wickner, T., H.F. Lodish. 1985. Multiple mechanisms of protein insertion into membranes. Science 230: 400–407.PubMedCrossRefGoogle Scholar
  71. 71.
    Close, T.J., R.C. Tait, C.I. Kado. 1985. Regulation of Ti plasmid virulence genes by a chromosomal locus of Agrobacterium tumefaciens. J. Bacteriol. 164: 774–781.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Gerard A. Cangelosi
    • 1
  • Eugene W. Nester
    • 1
  1. 1.Department of MicrobiologyUniversity of WashingtonSeattleUSA

Personalised recommendations