Skip to main content

Genetic Manipulation of the Fatty Acid Composition of Plant Lipids

  • Chapter
Opportunities for Phytochemistry in Plant Biotechnology

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 22))

Abstract

There are, in principle, many attractive opportunities for using recombinant DNA techniques to manipulate the lipid metabolism of higher plants. For instance, there are currently no major field crops that are used as a source of medium chain fatty acids (C8 – C12). If we understood the factors that regulate the acyl group chain length of storage lipids, it might be possible to genetically engineer one or more crop species to produce medium or very long chain fatty acids. Similarly, if detailed information were available concerning the enzymes which regulate fatty acid desaturation, it might be possible to use cloned genes for these enzymes to manipulate the fatty acid composition of many species to suit specific industrial needs. There are also many conceivable applications of recombinant DNA techniques to the manipulation of membrane lipid composition for both applied and academic ends. For instance, because of the possible importance of membrane lipid composition in the temperature responses of plants,1 it may be possible to genetically modify economically important crop species to better suit particular environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lyons, J.M., J.K. Raison, P.L. Steponkus. 1979. The plant membrane in response to low temperature. In Low Temperature Stress in Crop Plants: The Role of the Membrane. (J.M. Lyons, D. Graham, J.K. Raison, eds.), Academic Press, New York, pp. 1–24.

    Google Scholar 

  2. Roughan, P.G., C.R. Slack. 1982. Cellular organization of glycerolipid metabolism. Annu. Rev. Plant Physiol. 33: 97–123.

    Article  CAS  Google Scholar 

  3. Frentzen, M., E. Heinz, T.A. McKeon, P.K. Stumpf. 1983. Specificities and selectivities of glycerol-3-phosphate acyltransferase from pea and spinach chloroplasts. Eur. J. Biochem. 129: 629–636.

    Article  PubMed  CAS  Google Scholar 

  4. Block, M.A., A.J. Dorne, J. Joyard, R. Douce. 1983. The phosphatidic acid phosphatase of the chloroplast envelope is located on the inner envelope membrane. FEBS Lett. 164: 111–115.

    Article  CAS  Google Scholar 

  5. Andrews, J., J.B. Ohlrogge, K. Keegstra. 1985. Final step of phosphatidic acid synthesis in pea chloroplasts occurs in the inner envelope membrane. Plant Physiol. 78: 459–466.

    Article  PubMed  CAS  Google Scholar 

  6. Heemskerk, J.W.M., G. Bogemann, J.F.G.M. Wintermans. 1985. Spinach chloroplasts: localization of enzymes involved in galactolipid metabolism. Biochim. Biophys. Acta 835: 212–220.

    Article  CAS  Google Scholar 

  7. Coves, J., M.A. Block. J. Joyard, R. Douce. 1986. Solubilization and partial purification of UDP-galactose diacylglycerol galactosyl transferase activity from spinach chloroplast envelope. FEBS Lett. 208: 401–407.

    Article  CAS  Google Scholar 

  8. Frentzen, M., W. Hares, A. Schiburr. 1984. Properties of the microsomal glycerol-3-P and monoacylglycerol-3-P acyltransferases from leaves. In Structure, Function and Metabolism of Plant Lipids. (P.A. Siegenthaler, W. Eichenburger, eds.), Elsevier, Amsterdam, pp. 105–110.

    Google Scholar 

  9. Heinz, E., P.G. Roughan. 1983. Similarities and differences in lipid metabolism of chloroplasts isolated from 18:3 and 16:3 plants. Plant Physiol. 72: 273–279.

    Article  PubMed  CAS  Google Scholar 

  10. Jamieson, G.R., E.H. Reid. 1971. The occurrence of hexadeca-7,10,13-trienoic acid in the leaves of angiosperms. Phytochemistry 10: 1837–1843.

    Article  CAS  Google Scholar 

  11. Browse, J.A., N. Warwick, C.R. Somerville, C.R. Slack. Fluxes through the prokaryotic and eukaryotic pathway of lipid synthesis in the 16:3 plant Arabidopsis thaliana. Biochem. J. 235: 25-31.

    Google Scholar 

  12. Frentzen, M. 1986. Biosynthesis and desaturation of the different diacylglycerol moieties in higher plants. J. Plant Physiol. 124: 193–209.

    Article  CAS  Google Scholar 

  13. McKeon, T.A., P.K. Stumpf. 1982. Purification and characterization of the stearoyl-acyl carrier protein desaturase and the acyl-acyl carrier protein thioesterase from maturing seeds of safflower. J. Biol. Chem. 257: 12141–12147.

    PubMed  CAS  Google Scholar 

  14. Roughan, P.G., J.B. Mudd, T.T. McManus, C.R. Slack. 1979. Linoleate and α-linolenate synthesis by isolated chloroplasts. Biochem. J. 184: 571–574.

    PubMed  CAS  Google Scholar 

  15. Murphy, D.E., I.E. Woodrow, E. Latzko, K.D. Mukherjee. 1983. Solubilization of oleoyl-CoA thioesterase, oleoyl-CoA:PC acyltransferase and oleoyl phospha-tidylcholine desaturase. FEBS Lett. 162: 442–446.

    Article  CAS  Google Scholar 

  16. Gennity, J.M., P.K. Stumpf. 1985. Studies of the Δ12 desaturase of Carthamus tinctorius L. Arch. Biochem. Biophys. 239: 444–454.

    Article  PubMed  CAS  Google Scholar 

  17. Browse, J.A., C.R. Slack. 1981. Catalase stimulates linoleate desaturase activity in microsomes from developing linseed cotyledons. FEBS Lett. 131: 111–114.

    Article  CAS  Google Scholar 

  18. Stymne, S., L.A. Appelqvist. 1980. The biosynthesis of linoleate and α-linolenate in homogenates from developing soybean cotyledons. Plant Sci. Lett. 17: 287–294.

    Article  CAS  Google Scholar 

  19. Holloway, P.W. 1983. Fatty acid desaturation. The Enzymes 16: 63–83.

    Article  CAS  Google Scholar 

  20. Bonnerot, C., A.M. Galle, A. Jolliot, J.C. Kader. 1985. Purification and properties of plant cytochrome b5. Biochem. J. 226: 331–334.

    PubMed  CAS  Google Scholar 

  21. Galle, A.M., C. Bonnerot, A. Jolliot, J.C. Kader. 1984. Purification of a NADH-ferricyanide reductase from plant microsomal membranes with zwitterionic detergent. Biochem. Biophys. Res. Commun. 122: 1201–1205.

    Article  PubMed  CAS  Google Scholar 

  22. Galle, A.M., J.C. Kader. 1986. High performance liquid chromatography of plant membrane proteins. NADH-cytochrome b5 reductase as a model. J. Chromatogr. 366: 422–426.

    Article  CAS  Google Scholar 

  23. Dubacq, J.P., A. Tremolieres. 1983. Occurrence and function of phosphatidylglycerol containing trans-Δ3-hexadecenoic acid in photosynthetic lamellae. Physiol. Veg. 21: 293–312.

    CAS  Google Scholar 

  24. Slack, C.R., J.A. Browse. 1984. Synthesis of storage lipids in developing seeds. In Seed Physiology. (D.M. Murray, ed.), Vol. 1, Academic Press, New York, pp. 209–243.

    Google Scholar 

  25. Knowles, P.F., A.B. Hill. 1964. Inheritance of fatty acid content in the seed oil of a safflower introduction from Iran. Crop Sci. 4: 406–409.

    Article  CAS  Google Scholar 

  26. Poneleit, C.G., D.E. Alexander. 1965. Inheritance of linolenic acid and oleic acid in maize. Science 147: 1585–1586.

    Article  PubMed  CAS  Google Scholar 

  27. Widstrom, N.W., M.D. Jellum. 1984. Chromosomal location of genes controlling oleic and linoleic acid composition in the germ oil of two maize inbreds. Crop Sci. 24: 1113–1115.

    Article  CAS  Google Scholar 

  28. Green, A.G., D.R. Marshal. 1984. Isolation of induced mutants in linseed (Linum usitatissimum) having reduced linolenic acid content. Euphytica 33: 321–328.

    Article  CAS  Google Scholar 

  29. Robbelen, G., A. Nitsch. 1975. Genetical and physiological investigations on mutants for polyenoic fatty acids in rapeseed Brassica napus L. Z. Pflanzenzuecht. 75: 93–105.

    Google Scholar 

  30. Diepenbrock, W., R.F. Wilson. 1987. Genetic regulation of linolenic acid concentration in rapeseed. Crop Sci. 27: 75–77.

    Article  CAS  Google Scholar 

  31. Wilcox, J.R., J.F. Cavins, N.C. Nielsen. 1984. Genetic alteration of soybean oil composition by a chemical mutagen. J. Am. Oil Chem. Soc. 61: 97–100.

    Article  CAS  Google Scholar 

  32. Wilcox, J.R., J.F. Cavins. 1985. Inheritance of low linolenic acid content of the seed coat of a mutant in Glycine max. Theor. Appl. Genet. 71: 74–78.

    Article  CAS  Google Scholar 

  33. Graef, G.L., L.A. Miller, W.R. Fehr, E.G. Hammond. 1985. Fatty acid development in a soybean mutant with high stearic acid. J. Am. Oil Chem. Soc. 62: 773–775.

    Article  CAS  Google Scholar 

  34. Martin, B.A., R.W. Rinne. 1986. A comparison of oleic acid metabolism in the soybean (Glycine max [L] Merr.) genotypes Williams and A5, a mutant with decreased linoleic acid in the seed. Plant Physiol. 81: 41–44.

    Article  PubMed  CAS  Google Scholar 

  35. Purdy, R.H. 1986. High oleic sunflower: physical and chemical characteristics. J. Am. Oil Chem. Soc. 63: 1062–1065.

    Article  CAS  Google Scholar 

  36. Tonnet, M.L., A.G. Green. 1987. Characterization of the seed and leaf lipids of high and low linolenic acid flax genotypes. Arch. Biochem. Biophys. 252: 646–654.

    Article  PubMed  CAS  Google Scholar 

  37. Downey, R.K., D.I. McGregor. 1975. Breeding for modified fatty acid composition. Curr. Adv. Plant Sci. 12: 151–167.

    Google Scholar 

  38. Estelle, M.A., C.R. Somerville. 1986. The mutants of Arabidopsis. Trends Genet. 2: 89–93.

    Article  Google Scholar 

  39. Browse, J., P. McCourt, C.R. Somerville. 1985. Overall fatty acid composition of leaf lipids determined after combined digestion and fatty acid methyl-ester formation from fresh tissue. Anal. Biochem. 152: 141–146.

    Article  Google Scholar 

  40. Browse, J., P. McCourt, C.R. Somerville. 1985. A mutant of Arabidopsis lacking a chloroplast specific lipid. Science 227: 763–765.

    Article  PubMed  CAS  Google Scholar 

  41. Browse, J., P. McCourt, C.R. Somerville. 1986. A mutant of Arabidopsis deficient in C18:3 and C16:3 leaf lipids. Plant Physiol. 81: 859–864.

    Article  PubMed  CAS  Google Scholar 

  42. Norman, H.A., J.B. S.T. John. 1986. Metabolism of unsaturated monogalactosyl diacylglycerol molecular species in Arabidopsis thaliana reveals different sites and substrates for linolenic acid synthesis. Plant Physiol. 81: 731–736.

    Article  PubMed  CAS  Google Scholar 

  43. Douce, R., J. Joyard. 1980. Chloroplast envelope lipids: detection and biosynthesis. Methods Enzymol. 69: 290–301.

    Article  CAS  Google Scholar 

  44. Yamada, M., J.I. Ohnishi. 1982. Glycerolipid synthesis in Avena leaves during greening of etiolated seedlings III, Synthesis of α-linolenoyl monogalactosyl diacylglycerol from liposomal linoleoyl phosphatidylcholine by Avena plastids in the presence of phosphatidylcholine exchange protein. Plant Cell Physiol. 23: 767–773.

    Google Scholar 

  45. Slack, C.R., P.G. Roughan, N. Balasingham. 1977. Labelling studies in vivo on the metabolism of the acyl and glycerol moieties of the glycerolipids in the developing maize leaf. Biochem. J. 162: 289–296.

    PubMed  CAS  Google Scholar 

  46. Natsoulis, G., F. Hilger, G.R. Fink. 1986. The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetase of S. cerevisiae. Cell 46: 235–243.

    Article  PubMed  CAS  Google Scholar 

  47. Gounaris, K., J. Barber. 1983. Monogalactosyldiacyl-glycerol: the most abundant polar lipid in nature. Trends Biochem. Sci. 8: 378–381.

    Article  CAS  Google Scholar 

  48. Van Walraven, H.S., E. Koppenaal, H.J.P. Marvin, M.J.M. Hagendoorn, R. Kraayenhof. 1984. Lipid specificity for the reconstitution of well coupled ATPase proteoliposomes and a new method for lipid isolation from photosynthetic membranes. Eur. J. Biochem. 144: 563–566.

    Article  PubMed  Google Scholar 

  49. Leech, R.M., M.G. Rumsby, W.W. Thomson. 1973. Plastid differentiation, acyl lipid, and fatty acid changes in developing green maize leaves. Plant Physiol. 52: 240–245.

    Article  PubMed  CAS  Google Scholar 

  50. Galey, J., B. Francke, J. Bahl. 1980. Ultrastructure and lipid composition of etioplasts in developing dark-grown wheat leaves. Planta 149: 433–439.

    Article  CAS  Google Scholar 

  51. Sen, A., W.P. Williams, P.J. Quinn. 1981. The structure and thermotropic properties of pure 1,2-diacylgalactosylglycerols in aqueous systems. Biochim. Biophys. Acta 663: 380–389.

    Article  PubMed  CAS  Google Scholar 

  52. Quinn, P.J., W.P. Williams. 1983. The structural role of lipids in photosynthetic membranes. Biochim. Biophys. Acta 737: 223–266.

    Article  CAS  Google Scholar 

  53. Gounaris, K., D.D. Mannock, A. Sen, A.P.R. Brain, W.P. Williams, P.J. Quinn. 1983. Polyunsaturated fatty acid residues of galactolipids are involved in the control of bilayer/non-bilayer lipid transitions in higher plant chloroplasts. Biochim. Biophys. Acta 732: 229–242.

    Article  CAS  Google Scholar 

  54. Gounaris, K., A.P.R. Brain, P.J. Quinn, W.P. Williams. 1984. Structural reorganisation of chloroplast thylakoid membranes in response to heat stress. Biochim. Biophys. Acta 766: 198–208.

    Article  CAS  Google Scholar 

  55. Rawyler, A., P.A. Siegenthaler. 1981. Transmembrane distribution of phospholipids and their involvement in electron transport as revealed by phospholipase A2 treatment of spinach thylakoids. Biochim. Biophys. Acta 635: 348–368.

    Article  PubMed  CAS  Google Scholar 

  56. Leech, R.M., C.A. Walton, N.R. Baker. 1985. Some effects of 4-chloro-5-dimethylamino-2-phenyl-3(2H)-pyridazinone (SAN9785) on the development of thylakoid membranes in Hordeum vulgare L. Planta 165: 277–283.

    Article  CAS  Google Scholar 

  57. Vigh, L., F. Joo, M. Droppa, L.I. Horvath, G. Horvath. 1985. Modulation of chloroplast membrane lipids by homogeneous catalytic hydrogenation. Eur. J. Biochem. 147: 477–481.

    Article  PubMed  CAS  Google Scholar 

  58. Thomas, P.G., P.J. Dominy, L. Vigh, A.R. Mansourian, P.J. Quinn, W.P. Williams. 1986. Increased thermal stability of pigment-protein complexes of pea thylakoids following catalytic hydrogenation of membrane lipids. Biochim. Biophys. Acta 849: 131–140.

    Article  CAS  Google Scholar 

  59. Lemoine, Y., J.P. Dubacq, G. Zabulon. 1982. Changes in light harvesting capacities and trans-Δ3-hexadecenoic acid content in dark-and light-grown Picea abies. Physiol. Veg. 20: 487–503.

    CAS  Google Scholar 

  60. Duval, J.C., A. Tremolieres, J.P. Dubacq. 1979. The possible role of trans-hexadecenoic acid and phosphatidylglycerol in the light reactions of photosynthesis. FEBS Lett. 106: 414–418.

    Article  CAS  Google Scholar 

  61. Tremoleires, A., J.P. Dubacq, F. Ambard-Bretteville, R. Remy. 1981. Lipid composition of chlorophyll protein complexes. FEBS Lett. 130: 27–31.

    Article  Google Scholar 

  62. Remy, R., A. Tremolieres, F. Ambard-Bretteville. 1984. Formation of oligomeric light harvesting chlorophyll a/b protein by interaction between its monomeric form and liposomes. Photobiochem. Photobiophys. 7: 267–276.

    CAS  Google Scholar 

  63. McCourt, P., J. Browse, J. Watson, C.J. Arntzen, C.R. Somerville. 1985. Analysis of photosynthetic antenna function in a mutant of Arabidopsis thaliana (L.) lacking trans-hexadecenoic acid. Plant Physiol. 78: 853–858.

    Article  PubMed  CAS  Google Scholar 

  64. Roughan, P.G. 1986. A simplified isolation of phosphatidylglycerol. Plant Sci. 43: 57–62.

    Article  CAS  Google Scholar 

  65. Huner, N.P., M. Krol, J.P. Williams, E. Maissan, P.S. Low, D. Roberts, J.E. Thompson. 1987. Low temperature development induces a specific decrease in trans-Δ3-hexadecenoic acid content. Plant Physiol. 84: 12–18.

    Article  PubMed  CAS  Google Scholar 

  66. Barber, J. 1983. Photosynthetic electron transport in relation to thylakoid membrane composition and organization. Plant Cell Environ. 6: 311–322.

    Article  CAS  Google Scholar 

  67. Small, D.M. 1986. In The Physical Chemistry of Lipids: From Alkanes to Phospholipids. Plenum Press, New York, 665 pp.

    Google Scholar 

  68. Raison, J.K., J.K.M. Roberts, J.A. Berry. 1982. Correlation between the thermal stability of chloroplast (thylakoid) membranes and the composition and fluidity of their polar lipids upon acclimation of the higher plant Nerium oleander to growth temperature. Biochim. Biophys. Acta 688: 218–228.

    Article  CAS  Google Scholar 

  69. Hilton, J.L., A.L. Scharen, J.B. S.T. John, D.E. Moreland, K.H. Norris. 1969. Modes of action of pyridazinone herbicides. Weed Sci. 17: 541–547.

    CAS  Google Scholar 

  70. McCourt, P., L. Kunst, J. Browse, C.R. Somerville. 1987. The effects of reduced amounts of lipid unsaturation on chloroplast ultrastructure and photosynthesis in a mutant of Arabidopsis. Plant Physiol. 84: 353–360.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Somerville, C.R., Browse, J. (1988). Genetic Manipulation of the Fatty Acid Composition of Plant Lipids. In: Conn, E.E. (eds) Opportunities for Phytochemistry in Plant Biotechnology. Recent Advances in Phytochemistry, vol 22. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0274-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0274-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0276-7

  • Online ISBN: 978-1-4757-0274-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics