Genetic Manipulation of the Fatty Acid Composition of Plant Lipids

  • Chris R. Somerville
  • John Browse
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 22)


There are, in principle, many attractive opportunities for using recombinant DNA techniques to manipulate the lipid metabolism of higher plants. For instance, there are currently no major field crops that are used as a source of medium chain fatty acids (C8 – C12). If we understood the factors that regulate the acyl group chain length of storage lipids, it might be possible to genetically engineer one or more crop species to produce medium or very long chain fatty acids. Similarly, if detailed information were available concerning the enzymes which regulate fatty acid desaturation, it might be possible to use cloned genes for these enzymes to manipulate the fatty acid composition of many species to suit specific industrial needs. There are also many conceivable applications of recombinant DNA techniques to the manipulation of membrane lipid composition for both applied and academic ends. For instance, because of the possible importance of membrane lipid composition in the temperature responses of plants,1 it may be possible to genetically modify economically important crop species to better suit particular environmental conditions.


Fatty Acid Composition Thylakoid Membrane Phosphatidic Acid Phosphatidic Acid Chloroplast Envelope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lyons, J.M., J.K. Raison, P.L. Steponkus. 1979. The plant membrane in response to low temperature. In Low Temperature Stress in Crop Plants: The Role of the Membrane. (J.M. Lyons, D. Graham, J.K. Raison, eds.), Academic Press, New York, pp. 1–24.Google Scholar
  2. 2.
    Roughan, P.G., C.R. Slack. 1982. Cellular organization of glycerolipid metabolism. Annu. Rev. Plant Physiol. 33: 97–123.CrossRefGoogle Scholar
  3. 3.
    Frentzen, M., E. Heinz, T.A. McKeon, P.K. Stumpf. 1983. Specificities and selectivities of glycerol-3-phosphate acyltransferase from pea and spinach chloroplasts. Eur. J. Biochem. 129: 629–636.PubMedCrossRefGoogle Scholar
  4. 4.
    Block, M.A., A.J. Dorne, J. Joyard, R. Douce. 1983. The phosphatidic acid phosphatase of the chloroplast envelope is located on the inner envelope membrane. FEBS Lett. 164: 111–115.CrossRefGoogle Scholar
  5. 5.
    Andrews, J., J.B. Ohlrogge, K. Keegstra. 1985. Final step of phosphatidic acid synthesis in pea chloroplasts occurs in the inner envelope membrane. Plant Physiol. 78: 459–466.PubMedCrossRefGoogle Scholar
  6. 6.
    Heemskerk, J.W.M., G. Bogemann, J.F.G.M. Wintermans. 1985. Spinach chloroplasts: localization of enzymes involved in galactolipid metabolism. Biochim. Biophys. Acta 835: 212–220.CrossRefGoogle Scholar
  7. 7.
    Coves, J., M.A. Block. J. Joyard, R. Douce. 1986. Solubilization and partial purification of UDP-galactose diacylglycerol galactosyl transferase activity from spinach chloroplast envelope. FEBS Lett. 208: 401–407.CrossRefGoogle Scholar
  8. 8.
    Frentzen, M., W. Hares, A. Schiburr. 1984. Properties of the microsomal glycerol-3-P and monoacylglycerol-3-P acyltransferases from leaves. In Structure, Function and Metabolism of Plant Lipids. (P.A. Siegenthaler, W. Eichenburger, eds.), Elsevier, Amsterdam, pp. 105–110.Google Scholar
  9. 9.
    Heinz, E., P.G. Roughan. 1983. Similarities and differences in lipid metabolism of chloroplasts isolated from 18:3 and 16:3 plants. Plant Physiol. 72: 273–279.PubMedCrossRefGoogle Scholar
  10. 10.
    Jamieson, G.R., E.H. Reid. 1971. The occurrence of hexadeca-7,10,13-trienoic acid in the leaves of angiosperms. Phytochemistry 10: 1837–1843.CrossRefGoogle Scholar
  11. 11.
    Browse, J.A., N. Warwick, C.R. Somerville, C.R. Slack. Fluxes through the prokaryotic and eukaryotic pathway of lipid synthesis in the 16:3 plant Arabidopsis thaliana. Biochem. J. 235: 25-31.Google Scholar
  12. 12.
    Frentzen, M. 1986. Biosynthesis and desaturation of the different diacylglycerol moieties in higher plants. J. Plant Physiol. 124: 193–209.CrossRefGoogle Scholar
  13. 13.
    McKeon, T.A., P.K. Stumpf. 1982. Purification and characterization of the stearoyl-acyl carrier protein desaturase and the acyl-acyl carrier protein thioesterase from maturing seeds of safflower. J. Biol. Chem. 257: 12141–12147.PubMedGoogle Scholar
  14. 14.
    Roughan, P.G., J.B. Mudd, T.T. McManus, C.R. Slack. 1979. Linoleate and α-linolenate synthesis by isolated chloroplasts. Biochem. J. 184: 571–574.PubMedGoogle Scholar
  15. 15.
    Murphy, D.E., I.E. Woodrow, E. Latzko, K.D. Mukherjee. 1983. Solubilization of oleoyl-CoA thioesterase, oleoyl-CoA:PC acyltransferase and oleoyl phospha-tidylcholine desaturase. FEBS Lett. 162: 442–446.CrossRefGoogle Scholar
  16. 16.
    Gennity, J.M., P.K. Stumpf. 1985. Studies of the Δ12 desaturase of Carthamus tinctorius L. Arch. Biochem. Biophys. 239: 444–454.PubMedCrossRefGoogle Scholar
  17. 17.
    Browse, J.A., C.R. Slack. 1981. Catalase stimulates linoleate desaturase activity in microsomes from developing linseed cotyledons. FEBS Lett. 131: 111–114.CrossRefGoogle Scholar
  18. 18.
    Stymne, S., L.A. Appelqvist. 1980. The biosynthesis of linoleate and α-linolenate in homogenates from developing soybean cotyledons. Plant Sci. Lett. 17: 287–294.CrossRefGoogle Scholar
  19. 19.
    Holloway, P.W. 1983. Fatty acid desaturation. The Enzymes 16: 63–83.CrossRefGoogle Scholar
  20. 20.
    Bonnerot, C., A.M. Galle, A. Jolliot, J.C. Kader. 1985. Purification and properties of plant cytochrome b5. Biochem. J. 226: 331–334.PubMedGoogle Scholar
  21. 21.
    Galle, A.M., C. Bonnerot, A. Jolliot, J.C. Kader. 1984. Purification of a NADH-ferricyanide reductase from plant microsomal membranes with zwitterionic detergent. Biochem. Biophys. Res. Commun. 122: 1201–1205.PubMedCrossRefGoogle Scholar
  22. 22.
    Galle, A.M., J.C. Kader. 1986. High performance liquid chromatography of plant membrane proteins. NADH-cytochrome b5 reductase as a model. J. Chromatogr. 366: 422–426.CrossRefGoogle Scholar
  23. 23.
    Dubacq, J.P., A. Tremolieres. 1983. Occurrence and function of phosphatidylglycerol containing trans-Δ3-hexadecenoic acid in photosynthetic lamellae. Physiol. Veg. 21: 293–312.Google Scholar
  24. 24.
    Slack, C.R., J.A. Browse. 1984. Synthesis of storage lipids in developing seeds. In Seed Physiology. (D.M. Murray, ed.), Vol. 1, Academic Press, New York, pp. 209–243.Google Scholar
  25. 25.
    Knowles, P.F., A.B. Hill. 1964. Inheritance of fatty acid content in the seed oil of a safflower introduction from Iran. Crop Sci. 4: 406–409.CrossRefGoogle Scholar
  26. 26.
    Poneleit, C.G., D.E. Alexander. 1965. Inheritance of linolenic acid and oleic acid in maize. Science 147: 1585–1586.PubMedCrossRefGoogle Scholar
  27. 27.
    Widstrom, N.W., M.D. Jellum. 1984. Chromosomal location of genes controlling oleic and linoleic acid composition in the germ oil of two maize inbreds. Crop Sci. 24: 1113–1115.CrossRefGoogle Scholar
  28. 28.
    Green, A.G., D.R. Marshal. 1984. Isolation of induced mutants in linseed (Linum usitatissimum) having reduced linolenic acid content. Euphytica 33: 321–328.CrossRefGoogle Scholar
  29. 29.
    Robbelen, G., A. Nitsch. 1975. Genetical and physiological investigations on mutants for polyenoic fatty acids in rapeseed Brassica napus L. Z. Pflanzenzuecht. 75: 93–105.Google Scholar
  30. 30.
    Diepenbrock, W., R.F. Wilson. 1987. Genetic regulation of linolenic acid concentration in rapeseed. Crop Sci. 27: 75–77.CrossRefGoogle Scholar
  31. 31.
    Wilcox, J.R., J.F. Cavins, N.C. Nielsen. 1984. Genetic alteration of soybean oil composition by a chemical mutagen. J. Am. Oil Chem. Soc. 61: 97–100.CrossRefGoogle Scholar
  32. 32.
    Wilcox, J.R., J.F. Cavins. 1985. Inheritance of low linolenic acid content of the seed coat of a mutant in Glycine max. Theor. Appl. Genet. 71: 74–78.CrossRefGoogle Scholar
  33. 33.
    Graef, G.L., L.A. Miller, W.R. Fehr, E.G. Hammond. 1985. Fatty acid development in a soybean mutant with high stearic acid. J. Am. Oil Chem. Soc. 62: 773–775.CrossRefGoogle Scholar
  34. 34.
    Martin, B.A., R.W. Rinne. 1986. A comparison of oleic acid metabolism in the soybean (Glycine max [L] Merr.) genotypes Williams and A5, a mutant with decreased linoleic acid in the seed. Plant Physiol. 81: 41–44.PubMedCrossRefGoogle Scholar
  35. 35.
    Purdy, R.H. 1986. High oleic sunflower: physical and chemical characteristics. J. Am. Oil Chem. Soc. 63: 1062–1065.CrossRefGoogle Scholar
  36. 36.
    Tonnet, M.L., A.G. Green. 1987. Characterization of the seed and leaf lipids of high and low linolenic acid flax genotypes. Arch. Biochem. Biophys. 252: 646–654.PubMedCrossRefGoogle Scholar
  37. 37.
    Downey, R.K., D.I. McGregor. 1975. Breeding for modified fatty acid composition. Curr. Adv. Plant Sci. 12: 151–167.Google Scholar
  38. 38.
    Estelle, M.A., C.R. Somerville. 1986. The mutants of Arabidopsis. Trends Genet. 2: 89–93.CrossRefGoogle Scholar
  39. 39.
    Browse, J., P. McCourt, C.R. Somerville. 1985. Overall fatty acid composition of leaf lipids determined after combined digestion and fatty acid methyl-ester formation from fresh tissue. Anal. Biochem. 152: 141–146.CrossRefGoogle Scholar
  40. 40.
    Browse, J., P. McCourt, C.R. Somerville. 1985. A mutant of Arabidopsis lacking a chloroplast specific lipid. Science 227: 763–765.PubMedCrossRefGoogle Scholar
  41. 41.
    Browse, J., P. McCourt, C.R. Somerville. 1986. A mutant of Arabidopsis deficient in C18:3 and C16:3 leaf lipids. Plant Physiol. 81: 859–864.PubMedCrossRefGoogle Scholar
  42. 42.
    Norman, H.A., J.B. S.T. John. 1986. Metabolism of unsaturated monogalactosyl diacylglycerol molecular species in Arabidopsis thaliana reveals different sites and substrates for linolenic acid synthesis. Plant Physiol. 81: 731–736.PubMedCrossRefGoogle Scholar
  43. 43.
    Douce, R., J. Joyard. 1980. Chloroplast envelope lipids: detection and biosynthesis. Methods Enzymol. 69: 290–301.CrossRefGoogle Scholar
  44. 44.
    Yamada, M., J.I. Ohnishi. 1982. Glycerolipid synthesis in Avena leaves during greening of etiolated seedlings III, Synthesis of α-linolenoyl monogalactosyl diacylglycerol from liposomal linoleoyl phosphatidylcholine by Avena plastids in the presence of phosphatidylcholine exchange protein. Plant Cell Physiol. 23: 767–773.Google Scholar
  45. 45.
    Slack, C.R., P.G. Roughan, N. Balasingham. 1977. Labelling studies in vivo on the metabolism of the acyl and glycerol moieties of the glycerolipids in the developing maize leaf. Biochem. J. 162: 289–296.PubMedGoogle Scholar
  46. 46.
    Natsoulis, G., F. Hilger, G.R. Fink. 1986. The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetase of S. cerevisiae. Cell 46: 235–243.PubMedCrossRefGoogle Scholar
  47. 47.
    Gounaris, K., J. Barber. 1983. Monogalactosyldiacyl-glycerol: the most abundant polar lipid in nature. Trends Biochem. Sci. 8: 378–381.CrossRefGoogle Scholar
  48. 48.
    Van Walraven, H.S., E. Koppenaal, H.J.P. Marvin, M.J.M. Hagendoorn, R. Kraayenhof. 1984. Lipid specificity for the reconstitution of well coupled ATPase proteoliposomes and a new method for lipid isolation from photosynthetic membranes. Eur. J. Biochem. 144: 563–566.PubMedCrossRefGoogle Scholar
  49. 49.
    Leech, R.M., M.G. Rumsby, W.W. Thomson. 1973. Plastid differentiation, acyl lipid, and fatty acid changes in developing green maize leaves. Plant Physiol. 52: 240–245.PubMedCrossRefGoogle Scholar
  50. 50.
    Galey, J., B. Francke, J. Bahl. 1980. Ultrastructure and lipid composition of etioplasts in developing dark-grown wheat leaves. Planta 149: 433–439.CrossRefGoogle Scholar
  51. 51.
    Sen, A., W.P. Williams, P.J. Quinn. 1981. The structure and thermotropic properties of pure 1,2-diacylgalactosylglycerols in aqueous systems. Biochim. Biophys. Acta 663: 380–389.PubMedCrossRefGoogle Scholar
  52. 52.
    Quinn, P.J., W.P. Williams. 1983. The structural role of lipids in photosynthetic membranes. Biochim. Biophys. Acta 737: 223–266.CrossRefGoogle Scholar
  53. 53.
    Gounaris, K., D.D. Mannock, A. Sen, A.P.R. Brain, W.P. Williams, P.J. Quinn. 1983. Polyunsaturated fatty acid residues of galactolipids are involved in the control of bilayer/non-bilayer lipid transitions in higher plant chloroplasts. Biochim. Biophys. Acta 732: 229–242.CrossRefGoogle Scholar
  54. 54.
    Gounaris, K., A.P.R. Brain, P.J. Quinn, W.P. Williams. 1984. Structural reorganisation of chloroplast thylakoid membranes in response to heat stress. Biochim. Biophys. Acta 766: 198–208.CrossRefGoogle Scholar
  55. 55.
    Rawyler, A., P.A. Siegenthaler. 1981. Transmembrane distribution of phospholipids and their involvement in electron transport as revealed by phospholipase A2 treatment of spinach thylakoids. Biochim. Biophys. Acta 635: 348–368.PubMedCrossRefGoogle Scholar
  56. 56.
    Leech, R.M., C.A. Walton, N.R. Baker. 1985. Some effects of 4-chloro-5-dimethylamino-2-phenyl-3(2H)-pyridazinone (SAN9785) on the development of thylakoid membranes in Hordeum vulgare L. Planta 165: 277–283.CrossRefGoogle Scholar
  57. 57.
    Vigh, L., F. Joo, M. Droppa, L.I. Horvath, G. Horvath. 1985. Modulation of chloroplast membrane lipids by homogeneous catalytic hydrogenation. Eur. J. Biochem. 147: 477–481.PubMedCrossRefGoogle Scholar
  58. 58.
    Thomas, P.G., P.J. Dominy, L. Vigh, A.R. Mansourian, P.J. Quinn, W.P. Williams. 1986. Increased thermal stability of pigment-protein complexes of pea thylakoids following catalytic hydrogenation of membrane lipids. Biochim. Biophys. Acta 849: 131–140.CrossRefGoogle Scholar
  59. 59.
    Lemoine, Y., J.P. Dubacq, G. Zabulon. 1982. Changes in light harvesting capacities and trans-Δ3-hexadecenoic acid content in dark-and light-grown Picea abies. Physiol. Veg. 20: 487–503.Google Scholar
  60. 60.
    Duval, J.C., A. Tremolieres, J.P. Dubacq. 1979. The possible role of trans-hexadecenoic acid and phosphatidylglycerol in the light reactions of photosynthesis. FEBS Lett. 106: 414–418.CrossRefGoogle Scholar
  61. 61.
    Tremoleires, A., J.P. Dubacq, F. Ambard-Bretteville, R. Remy. 1981. Lipid composition of chlorophyll protein complexes. FEBS Lett. 130: 27–31.CrossRefGoogle Scholar
  62. 62.
    Remy, R., A. Tremolieres, F. Ambard-Bretteville. 1984. Formation of oligomeric light harvesting chlorophyll a/b protein by interaction between its monomeric form and liposomes. Photobiochem. Photobiophys. 7: 267–276.Google Scholar
  63. 63.
    McCourt, P., J. Browse, J. Watson, C.J. Arntzen, C.R. Somerville. 1985. Analysis of photosynthetic antenna function in a mutant of Arabidopsis thaliana (L.) lacking trans-hexadecenoic acid. Plant Physiol. 78: 853–858.PubMedCrossRefGoogle Scholar
  64. 64.
    Roughan, P.G. 1986. A simplified isolation of phosphatidylglycerol. Plant Sci. 43: 57–62.CrossRefGoogle Scholar
  65. 65.
    Huner, N.P., M. Krol, J.P. Williams, E. Maissan, P.S. Low, D. Roberts, J.E. Thompson. 1987. Low temperature development induces a specific decrease in trans-Δ3-hexadecenoic acid content. Plant Physiol. 84: 12–18.PubMedCrossRefGoogle Scholar
  66. 66.
    Barber, J. 1983. Photosynthetic electron transport in relation to thylakoid membrane composition and organization. Plant Cell Environ. 6: 311–322.CrossRefGoogle Scholar
  67. 67.
    Small, D.M. 1986. In The Physical Chemistry of Lipids: From Alkanes to Phospholipids. Plenum Press, New York, 665 pp.Google Scholar
  68. 68.
    Raison, J.K., J.K.M. Roberts, J.A. Berry. 1982. Correlation between the thermal stability of chloroplast (thylakoid) membranes and the composition and fluidity of their polar lipids upon acclimation of the higher plant Nerium oleander to growth temperature. Biochim. Biophys. Acta 688: 218–228.CrossRefGoogle Scholar
  69. 69.
    Hilton, J.L., A.L. Scharen, J.B. S.T. John, D.E. Moreland, K.H. Norris. 1969. Modes of action of pyridazinone herbicides. Weed Sci. 17: 541–547.Google Scholar
  70. 70.
    McCourt, P., L. Kunst, J. Browse, C.R. Somerville. 1987. The effects of reduced amounts of lipid unsaturation on chloroplast ultrastructure and photosynthesis in a mutant of Arabidopsis. Plant Physiol. 84: 353–360.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Chris R. Somerville
    • 1
  • John Browse
    • 2
  1. 1.MSU-DOE Plant Research LaboratoryMichigan State UniversityEast LansingUSA
  2. 2.Institute of Biological ChemistryWashington State UniversityPullmanUSA

Personalised recommendations