Molecular Genetic Methods for Detection and Identification of Viable but Nonculturable Microorganisms

  • Ivor T. Knight

Abstract

The problems associated with culture-based methods for detection and identification of microorganisms in clinical and environmental samples have motivated the development of alternative methods which do not require cultivation of the target organisms. Molecular genetic methods, which specifically target microbial nucleic acids, have become important tools for the identification of both cultured and uncultured microorganisms. The sensitivity of these methods approaches that of culture-based methods and it is arguable that the specificity of these methods generally exceeds that of culture-based methods. Indeed, molecular genetic methods have become a powerful set of tools used by many investigators to detect and identify culturable microorganisms in their viable but nonculturable state, as well as organisms which have yet to be brought into culture.

Keywords

Methane Sludge Tuberculosis Electrophoresis Bacillus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrams, E. S., and V. P. Stanton. 1992. Use of denaturing gradient gel electrophoresis to study conformational transitions in nucleic acids. Methods Enzymol. 212:71–104.PubMedCrossRefGoogle Scholar
  2. 2.
    Amann, R., J. Snaidr, M. Wagner, W. Ludwig, and K. Schleifer. 1996. In situ visualization of high genetic diversity in a natural microbial community. J. Bacteriol. 178:3496–3500.PubMedGoogle Scholar
  3. 3.
    Amann, R., N. Springer, W. Ludwig, H. Gortz, and K. Schleifer. 1991. Identification in situ and phylogeny of uncultured bacterial endosymbionts. Nature 351:161–164.PubMedCrossRefGoogle Scholar
  4. 4.
    Amann, R. I., B. J. Binder, R. J. Olson, S. W. Chisholm, R. Devereux, and D. A. Stahl. 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56:1919–1925.PubMedGoogle Scholar
  5. 5.
    Atlas, R. M., G. Sayler, R. S. Burlage, and A. K. Bej. 1992. Molecular approaches for environmental monitoring of microorganisms. BioTechniques 12:706.PubMedGoogle Scholar
  6. 6.
    Bej, A. K., J. L. DiCesare, L. Haff, and R. M. Atlas. 1991. Detection of Escherichia coli and Shigella spp. in water by using the polymerase chain reaction and gene probes for uid. Appl. Environ. Microbiol. 57:1013–1017.PubMedGoogle Scholar
  7. 7.
    Bej, A. K., R. J. Steffan, J. DiCesare, L. Haff, and R. M. Atlas. 1990. Detection of coliform bacteria in water by polymerase chain reaction and gene probes. Appl. Environ. Microbiol. 56:307–314.PubMedGoogle Scholar
  8. 8.
    Bogert, A. P., and I. T. Knight. 1995. Detection of enterotoxigenic E. coli in ground water using DNA hybridization and PCR, abstr. N-76, p. 345. In Abstracts of the 95th General Meeting of the American Society for Microbiology 1995. American Society for Microbiology, Washington, D.C.Google Scholar
  9. 9.
    Brauns, L. A., M. C. Hudson, and J. D. Oliver. 1991. Use of the polymerase chain reaction in detection of culturable and nonculturable Vibrio vulnificus cells. Appl. Environ. Microbiol. 57:2651–2655.PubMedGoogle Scholar
  10. 10.
    Delong, E. F. 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89:5685–5689.PubMedCrossRefGoogle Scholar
  11. 11.
    DeLong, E. F., D. G. Franks, and A. L. Alldredge. 1993. Phylogenetic diversity of aggregateattached vs. free-living marine bacterial assemblages. Limnol. Oceanogr. 38:924–934.CrossRefGoogle Scholar
  12. 12.
    DeLong, E. F., G. S. Wickham, and N. R. Pace. 1989. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243:1360–1363.PubMedCrossRefGoogle Scholar
  13. 13.
    Ferris, M. J., G. Muyzer, and D. M. Ward. 1996. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl. Environ. Microbiol. 62:340–346.PubMedGoogle Scholar
  14. 14.
    Giovannoni, S. J., E. F. DeLong, G. J. Olsen, and N. R. Pace. 1988. Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J. Bacteriol. 170:720–726.PubMedGoogle Scholar
  15. 15.
    Hicks, R. E., R. I. Amann, and D. A. Stahl. 1991. Dual staining of natural bacterioplankton with 4′,6-diamidino-2-phenylindole and fluorescent oligonucleotide probes targeting kingdom-level 16S rRNA sequences. Appl. Environ. Microbiol. 58:2158–2163.Google Scholar
  16. 16.
    Holben, W. E., and J. M. Tiedje. 1988. Applications of nucleic acid hybridization in microbial ecology. Ecology 69:561–568.CrossRefGoogle Scholar
  17. 17.
    Islam, M. S., M. K. Hasan, M. A. Miah, G. C. Sur, A. Felsenstein, M. Venkatesan, R. B. Sack, and M. J. Albert. 1993. Use of the polymerase chain reaction and fluorescent-antibody methods for detecting viable but nonculturable Shigella dysenteriae type 1 in laboratory microcosms. Appl. Environ. Microbiol. 59:536–540.PubMedGoogle Scholar
  18. 18.
    Jeffrey, W. H., S. Nazaret, and R. Von Haven. 1994. Improved method for recovery of mRNA from aquatic samples and its application to detection of mer expression. Appl. Environ. Microbiol. 60:1814–1821.PubMedGoogle Scholar
  19. 19.
    Josephson, K. L., C. P. Gerba, and I. L. Pepper. 1993. Polymerase chain reaction detection of nonviable bacterial pathogens. Appl. Environ. Microbiol. 59:3513–3515.PubMedGoogle Scholar
  20. 20.
    Khan, A. A., and C. E. Cerniglia. 1994. Detection of Pseudomonas aeruginosa from clinical and environmental samples by amplification of the exotoxin A gene using PCR. Appl. Environ. Microbiol. 60:3739–3745.PubMedGoogle Scholar
  21. 21.
    Knight, I. T., J. DiRuggiero, and R. R. Colwell. 1991. Direct detection of enteropathogenic bacteria in estuarine water using nucleic acid probes. Water Sci. Technol. 24:261–266.Google Scholar
  22. 22.
    Knight, I. T., W. E. Holben, J. M. Tiedje, and R. R. Colwell. 1991. Nucleic acid hybridization techniques for detection, identification and enumeration of microorganisms in the environment, p. 65–91. In M. Levin, R. J. Seidler, and M. Rogul (ed.), Microbial Ecology. Principles, Methods and Application to Environmental Biotechnology. McGraw-Hill, Inc., New York, N.Y.Google Scholar
  23. 23.
    Knight, I. T., S. Shults, C. W. Kaspar, and R. R. Colwell. 1990. Direct detection of Salmonella spp. in estuaries by using a DNA probe. Appl. Environ. Microbiol. 56:1059–1066.PubMedGoogle Scholar
  24. 24.
    Lawrence, L. M., and A. Gilmour. 1994. Incidence of Listeria spp. and Listeria monocytogenes in a poultry processing environment and in poultry products and their rapid confirmation by mulitplex PCR. Appl. Environ. Microbiol. 60:4600–4604.PubMedGoogle Scholar
  25. 25.
    Lee, K.-H., and E. G. Ruby. 1995. Symbiotic role of the viable but nonculturable state of Vibrio fischeri in Hawaiian coastal seawater. Appl. Environ. Microbiol. 61:278–283.PubMedGoogle Scholar
  26. 26.
    Liesack, W., and E. Stackebrandt. 1992. Unculturable microbes detected by molecular sequences and probes. Biodiversity Conserv. 1:250–262.CrossRefGoogle Scholar
  27. 27.
    Manz, W., U. Szewzyk, P. Ericsson, R. Amann, K.-H. Schleifer, and T.-A. Stenström. 1993. In situ identification of bacteria in drinking water and adjoining biofilms by hybridization with 16S and 23S rRNA-directed fluorescent oligonucleotide probes. Appl. Environ. Microbiol. 59:2293–2298.PubMedGoogle Scholar
  28. 28.
    McDonald, I. R., E. M. Kenna, and J. C. Murrell. 1995. Detection of methanotrophic bacteria in environmental samples with the PCR. Appl. Environ. Microbiol. 61:116–121.PubMedGoogle Scholar
  29. 29.
    Meier, A., D. H. Persing, M. Finken, and E. C. Böttger. 1993. Elimination of contaminating DNA within polymerase chain reaction reagents: implication for a general approach to detection of uncultured pathogens. J. Clin. Microbiol. 31:646–652.PubMedGoogle Scholar
  30. 30.
    Meinkoth, J., and G. Wahl. 1984. Hybridization of nucleic acids immobilized on solid supports. Anal. Biochem. 38:267–284.CrossRefGoogle Scholar
  31. 31.
    Mirza, M. S., D. Hahn, S. V. Dobritsa, and A. T. L. Akkermans. 1994. Phylogenetic studies on uncultured Frankia populations in nodules of Datisca cannabina. Can. J. Microbiol. 40:313–318.PubMedCrossRefGoogle Scholar
  32. 32.
    Morè, M. I., J. B. Herrick, C. Silva, W. C. Ghiorse, and E. L. Madsen. 1994. Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment. Appl. Environ. Microbiol. 60:1572–1580.PubMedGoogle Scholar
  33. 33.
    Muyzer, G., E. C. De Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695–700.PubMedGoogle Scholar
  34. 34.
    Nuovo, G. J. 1994. In situ detection of PCR-amplified DNA and cDNA: a review. J. Histotechnol. 17:235–246.Google Scholar
  35. 35.
    Ogram, A., G. S. Sayler, and T. Barkay. 1987. The extraction and purification of microbial DNA from sediments. J. Microbiol. Methods 7:57–66.CrossRefGoogle Scholar
  36. 36.
    Oyofo, B. A., and D. M. Rollins. 1993. Efficacy of filter types for detecting Campylobacter jejuni and Campylobacter coli in environmental water samples by polymerase chain reaction. Appl. Environ. Microbiol. 59:4090–4095.PubMedGoogle Scholar
  37. 37.
    Oyofo, B. A., S. A. Thornton, D. H. Burr, T. J. Trust, O. R. Pavlovskis, and P. Guerry. 1992. Specific detection of Campylobacter jejuni and Campylobacter coli by using polymerase chain reaction. J. Clin. Microbiol. 30:2613–2619.PubMedGoogle Scholar
  38. 38.
    Relman, D. A. 1993. The identification of uncultured microbial pathogens. J. Infect. Dis. 168:1–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Relman, D. A., J. S. Loutit, T. M. Schmidt, S. Falkow, and L. S. Thompkins. 1990. The agent of bacillary angiomatosis: an approach to the identification of uncultured pathogens. N. Eng. J. Med. 323:1573–1580.CrossRefGoogle Scholar
  40. 40.
    Relman, D. A., T. M. Schmidt, R. P. MacDermott, and S. Falkow. 1992. Identification of the uncultured bacillus of Whipple’s disease. N. Engl. J. Med. 327:293–301.PubMedCrossRefGoogle Scholar
  41. 41.
    Saiki, R. K., D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis, and H. A. Erlich. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491.PubMedCrossRefGoogle Scholar
  42. 42.
    Sayler, G. S., and A. C. Layton. 1990. Environmental application of nucleic acid hybridization. Annu. Rev. Microbiol. 44:625–648.PubMedCrossRefGoogle Scholar
  43. 43.
    Schmidt, T. M., B. Pace, and N. R. Pace. 1991. Detection of DNA contamination in Taq polymerase. BioTechniques 11:176–177.PubMedGoogle Scholar
  44. 44.
    Schmidt, T. M., and D. A. Relman. 1994. Phylogenetic identification of uncultured pathogens using ribosomal RNA sequences. Methods Enzymol. 215:205–222.CrossRefGoogle Scholar
  45. 45.
    Solnick, J. V., J. O’Rurke, A. Lee, B. J. Paster, F. E. Dewhirst, and L. S. Tompkins. 1993. An uncultured gastric spiral organism is a newly identified Helicobacter in humans. J. Infect. Dis. 168: 379–385.PubMedCrossRefGoogle Scholar
  46. 46.
    Somerville, C. C., I. T. Knight, W. L. Straube, and R. R. Colwell. 1989. Simple, rapid method for direct isolation of nucleic acids from aquatic environments. Appl. Environ. Microbiol. 55:548–554.PubMedGoogle Scholar
  47. 47.
    Southern, E. M. 1975. Detection of species specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503–517.PubMedCrossRefGoogle Scholar
  48. 48.
    Suzuki, M. T., and S. J. Giovannoni. 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62:625–630.PubMedGoogle Scholar
  49. 49.
    Spring, S., R. Amann, W. Ludwig, K.-H. Schleifer, and N. Peterson. 1992. Phylogenetic diversity and identification of nonculturable magnetotactic bacteria. Syst. Appl. Microbiol. 15:116–122.CrossRefGoogle Scholar
  50. 50.
    Steffan, R. J., J. Goksøyr, A. K. Bej, and R. M. Atlas. 1988. Recovery of DNA from soils and sediments. Appl. Environ. Microbiol. 54:2908–2915.PubMedGoogle Scholar
  51. 51.
    Thiem, S. M., M. L. Krumme, R. L. Smith, and J. M. Tiedje. 1994. Use of molecular techniques to evaluate the survival of a microorganism injected into an aquifer. Appl. Environ. Microbiol. 60: 1059–1067.PubMedGoogle Scholar
  52. 52.
    Thierry, D., C. Chureau, C. Aznar, and J.-L. Guesdon. 1992. The detection of Mycobacterium tuberculosis in uncultured clinical specimens using the polymerase chain reaction and a nonradioactive DNA probe. Mol. Cell Probes 6:181–191.PubMedCrossRefGoogle Scholar
  53. 53.
    Trebesius, K., R. Amann, W. Ludwig, K. Mühlegger, and K.-H. Schleifer. 1994. Identification of whole fixed bacterial cells with nonradioactive 23S rRNA-targeted polynucleotide probes. Appl. Environ. Microbiol. 60:3228–3235.PubMedGoogle Scholar
  54. 54.
    Victor, T., R. Du Toit, J. Van Zyl, A. J. Bester, and P. D. Van Helden. 1991. Improved method for the routine identification of toxigenic Escherichia coli by DNA amplification of a conserved region of the heatlabile toxin A subunit. J. Clin. Microbiol. 29:158–161.PubMedGoogle Scholar
  55. 55.
    Wagner, M., R. Erhart, W. Manz, R. Amann, H. Lemmer, D. Wedi, and K.-H. Schleifer. 1994. Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge. Appl. Environ. Microbiol. 60:792–800.PubMedGoogle Scholar
  56. 56.
    Wang, R.-F., W.-W. Cao, H. Wang, and M. G. Johnson. 1993. A 16S rRNA-based DNA probe and PCR method specific for Listeria ivanovii. FEMS Microbiol. Lett. 106:85–92.PubMedGoogle Scholar

Copyright information

© ASM Press, Washington, D.C. 2000

Authors and Affiliations

  • Ivor T. Knight
    • 1
  1. 1.Department of BiologyJames Madison UniversityHarrisonburgUSA

Personalised recommendations