Diversity of Uncultured Microorganisms in the Environment

  • Erko Stackebrandt
  • T. Martin Embley


With the ratification of the Convention on Biological Diversity by the signature nations, the importance of biological diversity for maintaining the life-sustaining systems of the biosphere has entered a legislative level. The preamble of this convention highlights the possibilities of significant reduction or loss of biological diversity at source caused by human activities, and it admits a “general lack of information and knowledge regarding biological diversity” and “the urgent need to develop scientific, technical and institutional capacities to provide the basic understanding upon which to plan and implement appropriate measures.” Nowhere is the lack of knowledge more acute than for uncultured microbial diversity. There is now a widespread appreciation among microbiologists that cultured microorganisms represent a very small, and not necessarily ecologically important fraction of natural microbial diversity. In fact, the microbiologists (e.g., Winogradsky and Beijerinck) who were most responsible for developing the selective enrichment approach were already aware of its limitations.


Clone Library Microbial Diversity rRNA Sequence Uncultured Microorganism Environmental Clone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alldredge, A. L., and M. W. Silver. 1988. Characteristics, dynamics, and significance of marine snow. Prog. Oceanogr. 20:41–82.CrossRefGoogle Scholar
  2. 2.
    Amann, R. I., C. Lin, R. Key, L. Montgomery, and D. A. Stahl. 1992. Diversity among Fibrobacter isolates: towards a phylogenetic classification. Syst. Appl. Microbiol. 15:23–31.CrossRefGoogle Scholar
  3. 3.
    Barns, S. M., R. E. Fundyga, M. W. Jeffries, and N. R. Pace. 1994. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc. Natl. Acad. Sci. USA 91: 1609-1613.Google Scholar
  4. 4.
    Britschgi, T., and S. J. Giovannoni. 1991. Phylogenetic analysis of a natural marine bacterioplankton population by rRNA gene cloning and sequencing. Appl. Environ. Microbiol. 57:1707–1713.PubMedGoogle Scholar
  5. 5.
    Brock, T. 1978. Thermophilic Organisms and Life at High Temperatures. Springer Verlag, New York, N.Y.CrossRefGoogle Scholar
  6. 6.
    Brooks, D. R., and D. A. McLennan. 1991. Phylogeny, ecology and behavior. The University of Chicago Press, Chicago, Ill.Google Scholar
  7. 7.
    Caron, D. A., P. G. Davis, L. P. Madin, and J. M. Sieburth. 1982. Heterotrophic bacteria and bacteriverous protozoa in oceanic macroaggregates. Science 218:795–797.PubMedCrossRefGoogle Scholar
  8. 8.
    DeLey, J., and J. DeSmedt. 1975. Improvements of the membrane filter method for DNA:rRNA hybridization. Antonie Leeuwenhoek J. Microbiol. Serol. 36:461–474.CrossRefGoogle Scholar
  9. 9.
    DeLong, E. F. 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89:5685–5689.PubMedCrossRefGoogle Scholar
  10. 10.
    DeLong, E. F., D. G. Franks, and A. L. Alldredge. 1993. Phylogenetic diversity of aggregateattached vs. free-living marine bacterial assemblages. Limnol. Oceanogr. 38:924–934.CrossRefGoogle Scholar
  11. 11.
    DeSoete, G. 1983. A least squares algorithm for fitting additive trees to proximity data. Psychometrica 48:621–626.CrossRefGoogle Scholar
  12. 12.
    Distel, D. L., E. F. DeLong, and J. B. Waterbury. 1991. Phylogenetic characterization and in situ localization of the bacterial symbiont of shipworms (Teredinidae:Brvalvia) by using 16S rRNA sequence analysis and oligodeoxynucleotide probe hybridization. Appl. Environ. Microbiol. 57:2376–2382.PubMedGoogle Scholar
  13. 13.
    Eady, R. R. 1992. The dinitrogen fixing bacteria, p. 534–554. In A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K.-H. Schleifer (ed), The Prokaryotes, 2nd ed. Springer Verlag, New York, N.Y.Google Scholar
  14. 14.
    Embley, T. M., and B. J. Finlay. 1994. The use of rRNA sequences to unravel the relationships between anaerobic ciliates and their methanogen endosymbionts. Microbiology 140:225–235.PubMedCrossRefGoogle Scholar
  15. 15.
    Esteban, G., B. J. Finlay, and T. M. Embley. 1993. New species double the diversity of anaerobic ciliates in a Spanish lake. FEMS Microbiol. Lett. 109:93–100.CrossRefGoogle Scholar
  16. 16.
    Esteban, G., B. E. Guhl, K. J. Clarke, T. M. Embley, and B. J. Finlay. 1993. Cyclidium porcatum n.sp.: free-living anaerobic scuticociliate containing a stable complex of hydrogenosomes, eubacteria and archaeobacteria. Eur. J. Protistol. 29:262–270.Google Scholar
  17. 17.
    Fenchel, T. 1988. Marine plankton food chains. Annu. Rev. Ecol. System. 19:19–38.CrossRefGoogle Scholar
  18. 18.
    Fenchel, T., and C. Barnard. 1993. A purple protist. Nature 362:300.CrossRefGoogle Scholar
  19. 19.
    Fenchel, T., and B. J. Finlay. 1989. Kentrophorus: a mouthless ciliate with a symbiotic kitchen garden. Ophelia 30:75–93.Google Scholar
  20. 20.
    Fenchel, T., and B. J. Finlay. 1990. Anaerobic free-living protozoa: growth efficiencies and the structure of anaerobic communities. FEMS Microbiol. Ecol. 74:269–276.CrossRefGoogle Scholar
  21. 21.
    Fenchel, T., T. Perry, and A. Thane. 1977. Anaerobiosis and symbiosis with bacteria in free-living ciliates. J. Protozool. 24:154–163.PubMedGoogle Scholar
  22. 22.
    Finlay, B. J., G. Esteban, K. J. Clarke, A. G. Williams, T. M. Embley, and R. P. Hirt. 1994. Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol. Lett. 117:157–162.PubMedCrossRefGoogle Scholar
  23. 23.
    Fuhrman, J. A., K. McCallum, and A. A. Davis. 1992. Novel major archaebacterial group from marine plankton. Nature 356:148–149.PubMedCrossRefGoogle Scholar
  24. 24.
    Fuhrman, J. A., K. McCallum, and A. A. Davis. 1993. Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific oceans. Appl. Environ. Microbiol. 59:1294–1302.PubMedGoogle Scholar
  25. 25.
    Fukatsu, T., and H. Ishikawa. 1993. Occurrence of chaperonin 60 and chaperonin 10 in primary and secondary bacterial symbionts of aphids: implications for the evolution of an endosymbiotic system in aphids. J. Mol. Evol. 36:568–577.PubMedCrossRefGoogle Scholar
  26. 26.
    Giovannoni, S. J., T. B. Britschgi, C. L. Moyer, and K. G. Field. 1990. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60–63.PubMedCrossRefGoogle Scholar
  27. 27.
    Goodfellow, M., and A. G. O’Donnell (eds). 1993. Handbook of New Bacterial Systematics. Academic Press, London, United Kingdom.Google Scholar
  28. 28.
    Hartmann, A. 1994. Towards soil microbial community structure analysis. Abstr. Moderne Analyseverfahren für die Bestimmung der Artenvielfalt von Mikroorganismen in natürlichen Standorten. Analytica 94, Munich, Germany.Google Scholar
  29. 29.
    Hugenholtz, P., B. M. Goebel, and N. R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180:4765–4774.PubMedGoogle Scholar
  30. 30.
    Johnson, J. J. 1973. The use of nucleic acid homologies in the taxonomy of anaerobic bacteria. Int. J. Syst. Bacteriol. 23:308–315.CrossRefGoogle Scholar
  31. 31.
    Johnson, J. L., and B. S. Francis. 1975. Taxonomy of the clostridia: ribosomal ribonucleic acid homologies among the species. J. Gen. Microbiol. 95:229–244.Google Scholar
  32. 32.
    Jørgensen, B. B. 1994. Determination of the physical-chemical environment. Abstr. Moderne Analyseverfahren ßr die Bestimmung der Artenvielfalt von Mikroorganismen in natürlichen Standorten. Analytica 94, Munich, Germany.Google Scholar
  33. 33.
    Jukes, T. H., and C. R. Cantor. 1969. Evolution of protein molecules, p. 21–132. In H. N. Munro (ed.), Mammalian Protein Metabolism. Academic Press, New York, N.Y.Google Scholar
  34. 34.
    Kopczynski, E. D., M. M. Bateson, and D. M. Ward. 1994. Recognition of chimeric small-subunit ribosomal DNAs composed of genes from uncultivated microorganisms. Appl. Environ. Microbiol. 60:746–748.PubMedGoogle Scholar
  35. 35.
    Lee, J. J., A. T. Soldo, W. Reisser, M. J. Lee, K. W. Jeon, and H. D. Görtz. 1985. The extent of algal and bacterial endosymbioses in protozoa. J. Protozool. 32:391–402.Google Scholar
  36. 36.
    Liesack, W., and E. Stackebrandt. 1992. Unculturable microbes detected by molecular sequences and probes. Biodiv. Conserv. 1:250–262.CrossRefGoogle Scholar
  37. 37.
    Liesack, W., and E. Stackebrandt. 1992. Occurrence of novel groups of the domain Bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. J. Bacteriol. 174:5072–5078.PubMedGoogle Scholar
  38. 38.
    Liesack, W., H. Weyland, and E. Stackebrandt. 1991. Potential risks of gene amplification by PCR as determined by 16S rDNA analysis of a mixed culture of strict barophilic bacteria. Microb. Ecol. 21:191–198.CrossRefGoogle Scholar
  39. 39.
    Maidak, B. L., G. J. Olsen, N. Larsen, R. Overbeek, M. J. McCaughey, and C. R. Woese. 1997. The ribosomal database project. Nucleic Acids Res. 25:109–111.PubMedCrossRefGoogle Scholar
  40. 40.
    McInerny, J. O., M. Wilkinson, J. W. Patching, T. M. Embley, and R. Powell. 1995. Recovery and phylogenetic analysis of novel archaeal rRNA sequences from a deep-sea deposit feeder. Appl. Environ. Microbiol. 61:1646–1648.Google Scholar
  41. 41.
    Moran, N., and P. Baumann. 1994. Phylogenetics of cytoplasmically inherited microorganisms of arthropods. Trends Ecol. Evol. 9:15–20.PubMedCrossRefGoogle Scholar
  42. 42.
    Moran, N. A., M. A. Munson, P. Baumann, and H. Ishikawa. 1993. A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc. R. Soc. London Ser. B 253:167–171.CrossRefGoogle Scholar
  43. 43.
    Munson, M. A., P. Baumann, and M. G. Kinsey. 1991. Buchnera gen. nov. and Buchnera aphidicola sp. nov. designation for a phylogenetic taxon consisting of the primary endosymbionts of aphids. Int. J. Syst. Bacteriol. 41:566–568.CrossRefGoogle Scholar
  44. 44.
    Muyzer, G., E. C. DeWaal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis of polymerase chain reaction amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695–700.PubMedGoogle Scholar
  45. 45.
    O’Neill, S. L., H. Gooding, and S. Aksoy. 1993. Phylogenetically distant symbiotic microorganisms reside in Glossina midgut and ovary tissues. Med. Vet. Entomol. 7:377–383.PubMedCrossRefGoogle Scholar
  46. 46.
    Oyaizu, H., N. Naruhashi, and T. Gamou. 1992. Molecular methods of analyzing bacterial diversity: the case of Rhizobia. Biodiv. Conserv. 1:237–249.CrossRefGoogle Scholar
  47. 47.
    Paabo, S., D. M. Irwin, and A. C. Wilson. 1990. DNA damage promotes jumping between templates during enzymatic amplification. J. Biol. Chem. 265:4718–4721.PubMedGoogle Scholar
  48. 48.
    Pace, N. R., D. A. Stahl, D. J. Lane, and G. J. Olsen. 1985. The analysis of natural microbial communities by ribosomal RNA sequences. Microb. Ecol. 9:1–56.Google Scholar
  49. 49.
    Pukall, R., O. Päuker, D. Buntefuß, G. Ulrichs, P. Lebaron, L. Bernhard, T. Guindulain, J. Vives-Rego, and E. Stackebrandt. 1998. High sequence diversity of Alteromonas-related cloned and cellular 16S rDNAs from a Mediterranean seawater mesocosm experiment. FEMS Microb. Ecol. 28:335–344.Google Scholar
  50. 50.
    Reysenbach, A-L., L. J. Giver, G. S. Wickham, and N. R. Pace. 1992. Differential amplification of rRNA genes by polymerase chain reaction. Appl. Environ. Microbiol. 58:3417–3418.PubMedGoogle Scholar
  51. 51.
    Rheims, H., C. Spröer, F. A. Rainey, and E. Stackebrandt. 1996. Molecular biological evidence for the occurrence of uncultured members of the actinomycete line of descent in different environments and geographical locations. Microbiology (Reading) 142:2863–2870.CrossRefGoogle Scholar
  52. 52.
    Ruff-Roberts, A. L., J. G. Kuenen, and D. M. Ward. 1994. Distribution of cultivated and uncultivated cyanobacteria and chloroflexus-like bacteria in hot spring microbial mats. Appl. Environ, Microbiol. 60:697–704.Google Scholar
  53. 53.
    Saitou, N., and M. Nei. 1987. The neighbour joining method: a new method for constructing phylogenetic trees. Mol. Biol. Evol. 4:406–425.PubMedGoogle Scholar
  54. 54.
    Schleifer, K. H., and E. Stackebrandt. 1983. Molecular systematics of prokaryotes. Annu. Rev. Microbiol. 37:143–187.PubMedCrossRefGoogle Scholar
  55. 55.
    Schmidt, T. M., E. F. DeLong, and N. R. Pace. 1991. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J. Bacteriol. 173:4371–4378.PubMedGoogle Scholar
  56. 56.
    Schröder, D., H. Deppisch, M. Obermeyer, G. Krohne, E. Stackebrandt, B. Höudobler, W. Goebel, and R. Gross. 1996. Intracellular endosymbiotic bacteria of Camponotus species (carpenter ants): systematics, evolution and ultrastructural characterization. Mol. Microbiol. 21:479–489.PubMedCrossRefGoogle Scholar
  57. 57.
    Seewaldt, E., and E. Stackebrandt. 1982. Partial sequence of 16S ribosomal RNA and the phylogeny of Prochloron. Nature 295:618–620.CrossRefGoogle Scholar
  58. 58.
    Servais, P., C. Courties, P. Lebaron, and M. Troussilier. 1999. Coupling bacterial activity measurements with cell sorting by flow cytometry. Microb. Ecol. 38:180–189.PubMedCrossRefGoogle Scholar
  59. 59.
    Sneath, P. H. A., and R. R. Sokal. 1973. Numerical Taxonomy: the Principles and Practice of Numerical Classification. Freeman, San Francisco, Calif.Google Scholar
  60. 60.
    Stackebrandt, E., W. Liesack, and B. M. Goebel. 1993. Bacterial diversity in a soil sample from a subtropical Australian environment as determined by 16S rDNA analysis. FASEB J. 7:232–236.PubMedGoogle Scholar
  61. 61.
    Stackebrandt, E., and B. M. Goebel. 1994. A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44:846–849.CrossRefGoogle Scholar
  62. 62.
    Stackebrandt, E., W. Ludwig, and G. E. Fox. 1985. 16S ribosomal RNA oligonucleotide cataloguing, p. 75–107. In G. Gottschalk (ed), Methods in Microbiology. Academic Press, London, United Kingdom.Google Scholar
  63. 63.
    Stahl, D. A., B. Flesher, H. R. Mansfield, and L. Montgomery. 1988. Use of phylogeneticallybased hybridization probes for studies of ruminai microbial ecology. Appl. Environ. Microbiol. 54: 1079–1884.PubMedGoogle Scholar
  64. 64.
    Torsvik, V., J. Goksoyr, and F. L. Daae. 1990. High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 56:782–787.PubMedGoogle Scholar
  65. 65.
    Ullman, J. S., and B. J. McCarthy. 1973. The relationship between mismatched base pairs and the thermal stability of DNA duplexes. Biochim. Biophys. Acta 294:416–424.PubMedGoogle Scholar
  66. 66.
    Von Wintzingerode, F., U. Göbel, and E. Stackebrandt. 1997. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21:213–229.CrossRefGoogle Scholar
  67. 67.
    Wagner, M., R. I. Amann, H. Lemmer, and K. H. Schleifer. 1993. Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl. Environ. Microbiol. 59:1520–1525.PubMedGoogle Scholar
  68. 68.
    Ward, D. M., R. Weller, and M. M. Bateson. 1990. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345:63–65.PubMedCrossRefGoogle Scholar
  69. 69.
    Waterbury, J. B., C. B. Calloway, and R. D. Turner. 1983. A cellulolytic nitrogen-fixing bacterium cultured from the gland of Deshayes in shipworms (Bivalvia: Teredinidae). Science 221:1401–1403.PubMedCrossRefGoogle Scholar
  70. 70.
    Wayne, L. G., D. J. Brenner, R. R. Colwell, P. A. D. Grimont, O. Kandier, M. I. Krichevsky, L. H. Moore, W. E. C. Moore, R. G. E. Murray, E. Stackebrandt, M. P. Starr, and H. G. Trüper. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37:463–464.CrossRefGoogle Scholar
  71. 71.
    Weller, R., M. M. Bateson, B. K. Heimbuch, E. D. Kopczynski, and D. M. Ward. 1992. Uncultivated cyanobacteria, Chloroflexus-like inhabitants, and spirochaete-like inhabitants of a hot spring cyanobacterial mat. Appl. Environ. Microbiol. 58:3964–3969.PubMedGoogle Scholar
  72. 72.
    Weller, R., J. W. Weller, and D. M. Ward. 1991. 16S rRNA sequences of uncultivated hot spring cyanobacterial mat inhabitants retrieved as randomly primed cDNA. Appl. Environ. Microbiol. 57: 1146–1151.PubMedGoogle Scholar
  73. 73.
    Winker, S., and C. R. Woese. 1991. A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst. Appl. Microbiol. 14:305–310.PubMedCrossRefGoogle Scholar
  74. 74.
    Young, J. P. W. 1992. Classification of nitrogen fixing organisms, p. 43–86. In G. Stacey, R. H. Burris, and H. Evans (ed.), Biological Nitrogen Fixation. Chapman and Hall, New York, N.Y.Google Scholar

Copyright information

© ASM Press, Washington, D.C. 2000

Authors and Affiliations

  • Erko Stackebrandt
    • 1
  • T. Martin Embley
    • 2
  1. 1.DSMZ-German Collection of Microorganisms and Cell CulturesBraunschweigGermany
  2. 2.Microbiology Group, Department of ZoologyThe Natural History MuseumLondonUK

Personalised recommendations