Membrane Bioenergetics in Reference to Marine Bacterial Culturability

  • Minoru Wada
  • Kazuhiro Kogure


Understanding of microbial ecology has been expanded by means of isolation, cultivation, and characterization of microorganisms found in natural environments. However, there are still many bacteria which are metabolically active but remain in the so-called “nonculturable” state in nature (44). This state was originally recognized because of the difference observed between direct viable counts and conventional viable counts in seawater (17). Since then, ecological and practical importance of viable but nonculturable cells have been investigated and debated with particular emphasis on Vibrio cholerae and other gram-negative marine bacteria (3, 4, 14, 20, 43, 44). The general features of cells entering the nonculturable state can be summarized as reduction in size (27), decrease in macromolecular synthesis (28), and changes in composition of the cell wall and/or membrane (20, 26). However, little has been investigated with respect to the changes in bioenergetic state.


Respiratory Chain Marine Bacterium Light Organ Sodium Pump Luminous Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atsumi, T., L. McCarter, and Y. Imae. 1992. Polar and lateral flagellar motors of marine Vibrio are driven by different ion-motive forces. Nature 355:182–184.PubMedCrossRefGoogle Scholar
  2. 2.
    Baumann, P., L. Baumann, M. Woolkalis, and S. Bang. 1983. Evolutionary relationships in Vibrio and Photobacterium: a basis for a natural classification. Annu. Rev. Microbiol. 37:369–398.PubMedCrossRefGoogle Scholar
  3. 3.
    Colwell, R. R., P. R. Brayton, D. J. Grimes, D. B. Roszak, S. A. Huq, and L. M. Palmer. 1985. Viable but non-culturable Vibrio cholerae and related pathogens in the environment: implications for the release of genetically engineered microorganisms. Bio/Technology 3:817–820.CrossRefGoogle Scholar
  4. 4.
    Colwell, R. R., M. L. Tamplin, P. R. Brayton, A. L. Gauzens, B. D. Tall, D. Herrington, M. M. Levine, S. Hall, A. Huq, and D. A. Sack. 1990. Environmental aspects of Vibrio cholerae in transmission of cholera, p. 327-343. In R. B. Sack and Y. Zinnaka (ed.), Advances on Cholera and Related Diarrheas, vol. 7. KTK Scientific, Tokyo, Japan.Google Scholar
  5. 5.
    Distel, D. L. 1998. Evolution of chemoautotrophic endosymbioses in bivalves. BioScience 48:277–286.CrossRefGoogle Scholar
  6. 6.
    Dunlap, P. V. 1984. Physiological and morphological state of the symbiotic bacteria from light organ of ponyfish. Biol. Bull. 176:410–425.CrossRefGoogle Scholar
  7. 7.
    Dunlap, P. V. 1985. Osmotic control of luminescence and growth in Photobacterium leiognathi from ponyfish light organs. Arch. Microbiol. 141:44–50.PubMedCrossRefGoogle Scholar
  8. 8.
    Dunlap, P. V. 1989. Regulation of luminescence by cyclic AMP in cya-like and crp-like mutants of Vibrio fischeri. J. Bacteriol. 171:1199–1202.PubMedGoogle Scholar
  9. 9.
    Grogan, D. W. 1984. Interaction of respiration and luminescence in a common marine bacterium. Arch. Microbiol. 137:159–162.CrossRefGoogle Scholar
  10. 10.
    Hastings, J. W., and K. H. Nealson. 1977. Bacterial bioluminescence. Annu. Rev. Microbiol. 31: 549-595.Google Scholar
  11. 11.
    Hastings, J. W., J. C. Makemson, and P. V. Dunlap. 1987. How are growth and luminescence regulated independently in light organ symbionts? Symbiosis 4:3–24.Google Scholar
  12. 12.
    Haygood, M. G., and K. H. Nealson. 1985. The effect of iron on the growth and luminescence of the symbiotic bacterium Vibrio fischeri. Symbiosis 1:39–51.Google Scholar
  13. 13.
    Haygood, M. G., and D. L. Distel. 1993. Bioluminescent symbionts of flashlight fishes and deepsea anglerfishes form unique lineages related to the genus Vibrio. Nature 363:154–156.PubMedCrossRefGoogle Scholar
  14. 14.
    Hoff, K. A. 1989. Survival of Vibrio anguillarum and Vibrio salmonicida at different salinities. Appl. Environ. Microbiol. 55:1775–1786.PubMedGoogle Scholar
  15. 15.
    Imae, Y., and T. Atsumi. 1989. Na+-driven bacterial flagellar motors. J. Bioenerg. Biomembr. 21: 705-716.Google Scholar
  16. 16.
    Jannasch, H. W., and D. C. Nelson. 1984. Recent progress in the microbiology of hydrothermal vents, p. 170-176. In M. J. King and C. A. Reddy (ed.), Current Perspectives in Microbial Ecology. American Society for Microbiology, Washington, D.C.Google Scholar
  17. 17.
    Kogure, K., U. Simidu, and N. Taga. 1979. A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 25:415–420.PubMedCrossRefGoogle Scholar
  18. 18.
    Kogure, K. 1998. Bioenergetics of marine bacteria. Curr. Opin. Biotechnol. 9:278–282.PubMedCrossRefGoogle Scholar
  19. 19.
    Lee, K-H., and E. G. Ruby. 1995. Symbiotic role of the viable but nonculturable state of Vibrio fischeri in Hawaiian coastal seawater. Appl. Environ. Microbiol. 61:278–283.PubMedGoogle Scholar
  20. 20.
    Linder, K., and J. D. Oliver. 1989. Membrane fatty acid and virulence changes in the viable but nonculturable state of Vibrio vulnificus. Appl. Environ. Microbiol. 55:2837–2842.PubMedGoogle Scholar
  21. 21.
    Makemson, J. C. 1986. Luciferase-dependent oxygen consumption by bioluminescent vibrios. J. Bacteriol. 165:461–466.PubMedGoogle Scholar
  22. 22.
    Makemson, J. C., and J. W. Hastings. 1986. Luciferase-dependent growth of cytochrome-deficient Vibrio harveyi. FEMS Microbiol. Ecol. 38:79–85.CrossRefGoogle Scholar
  23. 23.
    Mitchell, P. 1961. Coupling of phosphorylation to electron and hydrogen transfer by a chemosmotic type of mechanism. Nature 191:144–148.PubMedCrossRefGoogle Scholar
  24. 24.
    Nealson, K. H., T. Platt, and J. W. Hastings. 1970. The cellular control of the synthesis and activity of the bacterial luminescent system. J. Bacteriol. 104:313–322.PubMedGoogle Scholar
  25. 25.
    Nealson, K. H., and J. W. Hastings. 1977. Low oxygen is optimal for luciferase synthesis in some bacteria: ecological implications. Arch. Microbiol. 112:9–16.PubMedCrossRefGoogle Scholar
  26. 26.
    Oliver, J. D. 1993. Formation of viable but nonculturable cells, p. 239-272. In S. Kjelleberg (ed.), Starvation in Bacteria. Plenum, New York, N.Y.Google Scholar
  27. 27.
    Rollins, D. M., and R. R. Colwell. 1986. Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl. Environ. Microbiol. 52:531–538.PubMedGoogle Scholar
  28. 28.
    Roth, W. G., M. P. Leckie, and D. N. Dietzler. 1988. Restoration of colony-forming activity in osmotically stressed Escherichia coli by betain. Appl. Environ. Microbiol. 54:3142–3146.PubMedGoogle Scholar
  29. 29.
    Ruby, E. G., and K. H. Nealson. 1976. Symbiotic association of Photobacterium fischeri with the marine luminous fish Monocentris japonica: a model of symbiosis based on bacterial studies. Biol. Bull. 151:574–586.PubMedCrossRefGoogle Scholar
  30. 30.
    Ruby, E. G., and L. M. Asato. 1993. Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbiosis. Arch. Microbiol. 159:160–167.PubMedCrossRefGoogle Scholar
  31. 31.
    Ruby, E. G., and M. J. McFall-Ngai. 1992. A squid that glows in the light: development of an animal-bacterial mutualism. J. Bacteriol. 174:4865–4870.PubMedGoogle Scholar
  32. 32.
    Singleton, F. L., R. Attwell, S. Jangi, and R. R. Colwell. 1982. Effects of temperature and salinity on Vibrio cholerae growth. Appl. Environ. Microbiol. 44:1047–1058.PubMedGoogle Scholar
  33. 33.
    Tokuda, H. 1983. Isolation of Vibrio alginolyticus mutants defective in the respiration-coupled Na+ pump. Biochem. Biophys. Res. Commun. 114:113–118.PubMedCrossRefGoogle Scholar
  34. 34.
    Tokuda, H., T. Nakamura, and T. Unemoto. 1981. Potassium ion is required for the generation of pH-dependent membrane potential and ApH by the marine bacterium Vibrio alginolyticus. Biochemistry 20:4198–4203.PubMedCrossRefGoogle Scholar
  35. 35.
    Tokuda, H., M. Sugasawa, and T. Unemoto. 1982. Role of Na+ and K+ in α-aminoisobutyric acid transport by the marine bacterium Vibrio alginolyticus. J. Biol. Chem. 257:788–794.PubMedGoogle Scholar
  36. 36.
    Tokuda, H., and T. Unemoto. 1981. A respiration-dependent primary sodium extrusion system functioning at alkaline pH in the marine bacterium Vibrio alginolyticus. Biochem. Biophys. Res. Commun. 102:256–271.CrossRefGoogle Scholar
  37. 37.
    Tokuda, H., and T. Unemoto. 1985. The Na+-motive respiratory chain of marine bacteria. Microbiol. Sci. 2:65–71.PubMedGoogle Scholar
  38. 38.
    Ulitzur, S., A. Reinhertz, and J. W. Hastings. 1981. Factors affecting the cellular expression of bacterial luciferase. Arch. Microbiol. 137:159–162.Google Scholar
  39. 39.
    Wada, M., K. Kogure, K. Ohwada, and U. Simidu. 1992. Coupling between the respiratory chain and the luminescent system of Vibrio harveyi. J. Gen. Microbiol. 138:1607–1611.Google Scholar
  40. 40.
    Wada, M., H. Tokuda, K. Kogure, and K. Ohwada. 1994. The membrane fraction of Vibrio harveyi as a possible site of in vivo luminescence, p. 560-563. In A. K. Campbell, L. J. Kricka, and P. E. Stanley (ed.), Bioluminescence and Chemiluminescence: Fundamentals and Applied Aspects. John Wiley & Sons, Chichester, United Kingdom.Google Scholar
  41. 41.
    Wada, M., and P. V. Dunlap. 1997. Molecular cloning of the respiratory NADH dehydrogenase (NDH-2) from Vibrio fischeri, abstr. I-60, p. 331. In Abstracts of the 97th General Meeting of the American Society for Microbiology 1997. American Society for Microbiology, Washington, D.C.Google Scholar
  42. 42.
    Watanabe, T., N. Mimura, A. Takimoto, and T. Nakamura. 1975. Luminescence and respiratory activities of Photobacterium phosphoreum. J. Biochem. 77:1147–1155.PubMedGoogle Scholar
  43. 43.
    Wolf, P. W., and J. D. Oliver. 1992. Temperature effects on the viable but nonculturable state of Vibrio vulnificus. FEMS Microbiol. Ecol. 101:33–39.Google Scholar
  44. 44.
    Xu, H.S., N. Roberts, F. L. Singleton, R. W. Attwell, D. J. Grimes, and R. R. Colwell. 1982. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb. Ecol. 8:313–323.CrossRefGoogle Scholar

Copyright information

© ASM Press, Washington, D.C. 2000

Authors and Affiliations

  • Minoru Wada
    • 1
  • Kazuhiro Kogure
    • 1
  1. 1.Ocean Research InstituteUniversity of TokyoNakano, Tokyo 164Japan

Personalised recommendations