Size Matters: Dwarf Cells in Soil and Subsurface Terrestrial Environments

  • Thomas L. Kieft


Soils are perhaps the most challenging of natural environments to characterize microbiologically. The difficulties arise from the spatial heterogeneity, temporal variability, and multiphase nature of soil environments, and from the concomitant high diversity of microorganisms, most of which cannot be cultured. While the situation is not unique to soils, the problem is especially acute in soils because the nonculturable (or at least noncultured by current techniques) fraction of the community is generally very large. Comparisons of dilution plate counts of culturable microorganisms with direct microscopic counts of total microorganisms indicate that only 0.001 to 4% of microorganisms in soils can be cultured on organic growth media (32, 50, 142). Information regarding the nature of these uncultivated microbes has come from microscopic studies (e.g., 8), indirect characterization by activity measurements (e.g., 7), and molecular approaches, such as amplification, cloning, and sequencing of genes encoding small subunit RNA genes (e.g., 118).


Porous Medium Pore Throat Subsurface Environment Deep Subsurface Endogenous Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexander, M. 1977. Introduction to Soil Microbiology, 2nd ed. John Wiley and Sons, New York, N.Y.Google Scholar
  2. 2.
    Allison, S. M., and J. L. Prosser. 1991. Survival of ammonia oxidizing bacteria in air-dried soil. FEMS Microbiol. Lett. 79:65–68.CrossRefGoogle Scholar
  3. 3.
    Amy, P. S., C. Durham, D. Hill, and D. L. Haldeman. 1993. Starvation-survival of deep subsurface isolates. Curr. Microbiol. 26:345–352.CrossRefGoogle Scholar
  4. 4.
    Amy, P. S., and D. L. Haldeman (ed.). 1997. The Microbiology of the Terrestrial Subsurface. CRC Press, Boca Raton, Fla.Google Scholar
  5. 5.
    Amy, P. S., D. L. Haldeman, D. Ringelberg, D. H. Hall, and C. Russell. 1992. Comparison of the identification systems for study of water and endolithic bacterial isolates from the subsurface. Appl. Environ. Microbiol. 58:3367–3373.PubMedGoogle Scholar
  6. 6.
    Amy, P. S., and R. Y. Morita. 1983. Starvation-survival patterns of sixteen freshly isolated open ocean bacteria. Appl. Environ. Microbiol. 45:1109–1115.PubMedGoogle Scholar
  7. 7.
    Baath, E. 1994. Thymine and leucine incorporation in soil bacteria with different cell size. Microb. Ecol. 27:267–278.CrossRefGoogle Scholar
  8. 8.
    Bae, H. C., E. H. Cota-Robles, and L. E. Casida. 1972. Microflora of soil as viewed by transmission electron microscopy. Appl. Microbiol. 23:637–648.PubMedGoogle Scholar
  9. 9.
    Bae, H. C., and L. E. Casida. 1973. Responses of indigenous microorganisms to soil incubations as viewed by transmission electron microscopy of cell thin sections. J. Bacteriol. 113:1462–1473.PubMedGoogle Scholar
  10. 10.
    Bakken, L. R. 1985. Separation and purification of bacteria from soil. Appl. Environ. Microbiol. 49:1482–1487.PubMedGoogle Scholar
  11. 11.
    Bakken, L. R., and R. A. Olsen. 1986. Dwarf cells in soil—a result of starvation of “normal” bacteria, or a separate population? p. 561–566. In F. Megusar and M. Gantar (ed.), Current Perspectives in Microbial Ecology. Proceedings of the Fourth International Symposium on Microbial Ecology, Ljubljana, Yugoslavia. Slovene Society for Microbiology, Ljubljana, YugoslaviaGoogle Scholar
  12. 12.
    Bakken, L. R., and R. A. Olsen. 1987. The relationship between cell size and viability of soil bacteria. Microb. Ecol. 13:103–114.CrossRefGoogle Scholar
  13. 13.
    Bakken, L. R., and R. A. Olsen. 1989. DNA-content of soil bacteria of different cell size. Soil Biol. Biochem. 21:789–793.CrossRefGoogle Scholar
  14. 14.
    Balkwill, D. L. 1989. Numbers, diversity, and morphological characteristics of aerobic chemoheterotrophic bacteria in deep subsurface sediments from a site in South Carolina. Geomicrobiol. J. 7:33–52.CrossRefGoogle Scholar
  15. 15.
    Balkwill, D. L., and L. E. Casida. 1973. Microflora of soil as viewed by freeze-etching. J. Bacteriol. 114:1319–1327.PubMedGoogle Scholar
  16. 16.
    Balkwill, D. L., J. K. Fredrickson, and J. M. Thomas. 1989. Vertical and horizontal variations in the physiological diversity of the aerobic chemoheterotrophic bacterial microflora in deep southeast coastal plain deep subsurface sediments. Appl. Environ. Microbiol. 55:1058–1065.PubMedGoogle Scholar
  17. 17.
    Balkwill, D. L., and W. C. Ghiorse. 1985. Characterization of subsurface bacteria associated with two shallow aquifers in Oklahoma. Appl. Environ. Microbiol. 50:580–588.PubMedGoogle Scholar
  18. 18.
    Bass, C. J., R. A. Davey, P. F. Sanders, and H. M. Lappin-Scott. 1993. Isolation and core penetration of starved and vegetative cultures from North Sea oil systems, abstr. F-16. In Programme and Abstracts of the 1993 International Symposium on Subsurface Microbiology. Bath, United Kingdom.Google Scholar
  19. 19.
    Bintrim, S. B., T. J. Donohue, J. Handelsman, G. P. Roberts, and R. M. Goodman. 1997. Molecular phylogeny of Archaea from soil. Proc. Natl. Acad. Sci. USA 94:277–282.PubMedCrossRefGoogle Scholar
  20. 20.
    Bone, T. L., and D. L. Balkwill. 1988. Morphological and cultural comparison of microorganisms in surface soil and subsurface sediments at a pristine study site in Oklahoma. Microb. Ecol. 16:49–64.CrossRefGoogle Scholar
  21. 21.
    Boylen, C. W. 1973. Survival of Arthrobacter crystallopoietes during prolonged periods of extreme desiccation. J. Bacteriol. 113:33–37.PubMedGoogle Scholar
  22. 22.
    Boylen, C. W., and J. C. Ensign. 1970. Long-term starvation survival of rod and spherical cells of Arthrobacter crystallopoietes. J. Bacteriol. 103:569–577.Google Scholar
  23. 23.
    Boylen, C. W., and J. C. Ensign. 1970. Intracellular substrates for endogenous metabolism during long-term starvation of rod and spherical cells of Arthrobacter crystallopoietes. J. Bacteriol. 103: 578–587.PubMedGoogle Scholar
  24. 24.
    Boylen, C. W., and M. H. Mulks. 1978. The survival of coryneform bacteria during periods of prolonged nutrient starvation. J. Gen. Microbiol. 105:323–334.Google Scholar
  25. 25.
    Boylen, C. W., and J. L. Pate. 1973. Fine structure of Arthrobacter crystallopoietes during longterm starvation of rod and spherical stage cells. Can. J. Microbiol. 19:1–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Bradley, J. P., R. P. Harvey, and H. Y. McSween, Jr. 1997. No ‘nanofossils’ in Martian meteorite. Nature 390:455–456.CrossRefGoogle Scholar
  27. 27.
    Brockman, F. J., T. L. Kieft, J. K. Fredrickson, B. N. Bjornstad, S. W. Li, W. Spangenburg, and P. E. Long. 1992. Microbiology of vadose zone paleosols in south-central Washington State. Microb. Ecol. 23:279–301.CrossRefGoogle Scholar
  28. 28.
    Brockman, F. J., D. B. Ringelberg, D. C. White, J. K. Fredrickson, D. L. Balkwill, T. L. Kieft, T. J. Phelps, and W. C. Ghiorse. 1993. Estimates of intact but nonviable and viable but nonculturable microorganisms in subsurface sediments from six boreholes located in wet and dry climatic regions of the United States, abstr. B-32. In Programme and Abstracts of the 1993 International Symposium on Subsurface Microbiology. Bath, United Kingdom.Google Scholar
  29. 29.
    Bushby, H. V. A., and K. C. Marshall. 1977. Water status of Rhizobia in relation to their susceptibility to desiccation and their protection by montmorillonite. J. Gen. Microbiol. 99:19–27.Google Scholar
  30. 30.
    Cacciari, I., and D. Lippi. 1987. Arthrobacters: successful arid soil bacteria. A review. Arid Soil Res. Rehab. 1:1–30.CrossRefGoogle Scholar
  31. 31.
    Camper, A. K., J. T. Hayes, P. J. Sturman, W. L. Jones, and A. B. Cunningham. 1993. Effects of motility and adsorption rate coefficient on transport of bacteria through saturated porous media. Appl. Environ. Microbiol. 59:3455–3462.PubMedGoogle Scholar
  32. 32.
    Casida, L. E. 1965. Abundant microorganism in soil. Appl. Microbiol. 13:327–334.PubMedGoogle Scholar
  33. 33.
    Casida, L. E. 1977. Small cells in pure cultures of Agromyces ramosus and in natural soil. Can. J. Microbiol. 23:214–216.PubMedCrossRefGoogle Scholar
  34. 34.
    Chandler, D. P., F. J. Brockman, T. J. Bailey, and J. K. Fredrickson. 1998. Phylogenetic diversity of Archaea and Bacteria in a deep subsurface paleosol. Microb. Ecol. 936:37–50.CrossRefGoogle Scholar
  35. 35.
    Chapelle, F. H. 1993. Ground-Water Microbiology and Geochemistry. Wiley, New York, N.Y.Google Scholar
  36. 36.
    Chapelle, F. H., and D. R. Lovley. 1990. Rates of microbial metabolism in deep coastal plain aquifers. Appl. Environ. Microbiol. 56:1865–1874.PubMedGoogle Scholar
  37. 37.
    Chen, M., and M. Alexander. 1973. Survival of soil bacteria during prolonged desiccation. Soil Biol. Biochem. 5:213–221.CrossRefGoogle Scholar
  38. 38.
    Christensen, H., R. A. Olsen, and L. R. Bakken. 1995. Flow cytometric measurements of cell volumes and DNA contents during culture of indigenous soil bacteria. Microb. Ecol. 29:49–62.CrossRefGoogle Scholar
  39. 39.
    Colwell, F. S. 1989. Microbiological comparison of surface soil and unsaturated subsurface soil from a semiarid high desert. Appl. Environ. Microbiol. 55:2420–2423.PubMedGoogle Scholar
  40. 40.
    Costerton, J. W. F., F. Cusack, and F. A. MacLeod. 31 January 1989. Microbial process for selectively plugging a subterranean formation. U.S. patent 4,800,959.Google Scholar
  41. 41.
    Costerton, J. W. F., F. Cusack, T. J. Cyr, S. A. Blenkinsopp, and C. P. Anderson. 29 December 1992. Microbial manipulation of surfactant-containing foams to reduce subterranean formation permeability. U.S. patent 5,174,378.Google Scholar
  42. 42.
    Costerton, J. W. 1993. Ultramicrobacteria and biofilms—mode of growth is pivotal in the subsurface environment, abstr. B-1. In Programme and Abstracts of the 1993 International Symposium on Subsurface Microbiology. Bath, United Kingdom.Google Scholar
  43. 43.
    Cusack, F., S. Singh, C. McCarthy, J. Grieci, M. de Rocco, D. Nguyen, H. Lappin-Scott, and J. W. Costerton. 1992. Enhanced oil recovery: three-dimensional sandpack simulation of ultramicrobacteria resuscitation in reservoir formation. J. Gen. Microbiol. 138:647–655.Google Scholar
  44. 44.
    Dawes, E. A. 1985. Starvation, survival and energy reserves, p. 43–79. In M. Fletcher and G. D. Floodgate (ed.), Bacteria in Their Natural Environments. Academic Press, London, United Kingdom.Google Scholar
  45. 45.
    Dawson, M. P., B. A. Humphrey, and K. C. Marshall. 1981. Adhesion: a tactic in the survival strategy of a marine vibrio during starvation. Curr. Microbiol. 6:195–199.CrossRefGoogle Scholar
  46. 46.
    Dommergues, Y. R., L. W. Belser, and E. L. Schmidt. 1978. Limiting factors for microbial growth and activity in soil. Adv. Microb. Ecol. 2:49–104.CrossRefGoogle Scholar
  47. 47.
    Donachie, W. D., and A. C. Robinson. 1987. Cell division: parameter values and the process, p. 1578–1593. In F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaecter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C.Google Scholar
  48. 48.
    Ekendahl, S., J. Arlinger, F. Stahl, and K. Pedersen. 1994. Characterization of attached bacterial populations in deep granitic groundwater from the Stripa research mine by 16S rRNA gene sequencing and scanning electron microscopy. Microbiology 140:1575–1583.PubMedCrossRefGoogle Scholar
  49. 49.
    England, L. S., H. Lee, and J. T. Trevors. 1993. Bacteria survival in soil: effects of clays and protozoa. Soil Biol. Biochem. 25:525–531.CrossRefGoogle Scholar
  50. 50.
    Faegri, A., V. Lid Torsvik, and J. Goksoyr. 1977. Bacterial and fungal activities in soil: separation of bacteria and fungi by a rapid fractionated centrifugation technique. Soil Biol. Biochem. 9:105–112.CrossRefGoogle Scholar
  51. 51.
    Folk, R. L. 1993. SEM imaging of bacteria and nannobacteria in carbonate sediments and rocks. J. Sed. Petrol. 63:990–999.Google Scholar
  52. 52.
    Folk, R. L. 1996. In defense of nannobacteria. Science 276:1777.Google Scholar
  53. 53.
    Folk, R. L., and F. L. Lynch. 1997. Nannobacteria are alive on Earth as well as Mars, p. 406–419. In R. B. Hoover (ed.), Proceedings of SPIE, Instruments, Methods, and Missions for the Investigation of Extraterrestrial Microorganisms, San Diego, CA, 27 July–1 August. SPIE, Vol. 3111. The International Society for Optical Engineering, Bellingham, Wash.Google Scholar
  54. 54.
    Fontes, D. E., A. L. Mills, G. M. Hornberger, and J. S. Herman. 1991. Physical and chemical factors influencing transport of microorganisms through porous media. Appl. Environ. Microbiol. 57: 2473–2481.PubMedGoogle Scholar
  55. 55.
    Fredrickson, J. K., D. L. Balkwill, J. M. Zachara, S. W. Li, F. J. Brockman, and M. A. Simmons. 1991. Physiological diversity and distributions of heterotrophic bacteria in deep cretaceous sediments of the Atlantic coastal plain. Appl. Environ. Microbiol. 57:402–411.PubMedGoogle Scholar
  56. 56.
    Fredrickson, J. K., F. J. Brockman, B. N. Bjornstad, P. E. Long, S. W. Li, J. P. McKinley, J. V. Wright, J. L. Conca, T. L. Kieft, and D. L. Balkwill. 1993. Microbiological characterization of pristine and contaminated deep vadose sediments from an arid region. Geomicrobiol. J. 11:95–107.CrossRefGoogle Scholar
  57. 57.
    Fredrickson, J. K., and M. Fletcher (ed.). Subsurface Microbiology and Biogeochemistry, in press. John Wiley & Sons, New York, N.Y.Google Scholar
  58. 58.
    Fredrickson, J. K., T. R. Garland, R. J. Hicks, J. M. Thomas, S. W. Li, and K. M. McFadden. 1989. Lithotrophic and heterotrophic bacteria in deep subsurface sediments and their relation to sediment properties. Geomicrobiol. J. 7:53–66.CrossRefGoogle Scholar
  59. 59.
    Fredrickson, J. K., J. P. McKinley, B. N. Bjornstad, P. E. Long, D. B. Ringelberg, D. C. White, L. R. Krumholz, J. M. Suflita, F. S. Colwell, R. M. Lehman, and T. J. Phelps. 1997. Pore-size constraints on the activity and survival of subsurface bacteria in a late Cretaceous shale-sandstone sequence, northwestern New Mexico. Geomicrobiol. J. 14:183–202.CrossRefGoogle Scholar
  60. 60.
    Fredrickson, J. K., J. P. McKinley, S. A. Nierzwicki-Bauer, D. C. White, D. B. Ringelberg, S. A. Rawson, S.-M. Li, F. J. Brockman, and B. N. Bjornstad. 1995. Microbial community structure and biogeochemistry of Miocene subsurface sediments: implications for long-term microbial survival. Mol. Ecol. 4:619–626.CrossRefGoogle Scholar
  61. 61.
    Freeze, R. A., and J. A. Cherry. 1979. Groundwater. Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  62. 62.
    Gannon, J. T. V. B. Manilal, and M. Alexander. 1991. Relationship between cell surface properties and transport of bacteria through soil. Appl. Environ. Microbiol. 57:190–193.PubMedGoogle Scholar
  63. 63.
    Ghiorse, W. C., and D. L. Balkwill. 1983. Enumeration and morphological characterization of bacteria indigenous to subsurface sediments. Dev. Ind. Microbiol. 24:213–224.Google Scholar
  64. 64.
    Gold, T. 1992. The deep, hot biosphere. Proc. Natl. Acad. Sci. USA 89:6045–6049.PubMedCrossRefGoogle Scholar
  65. 65.
    Griffin, D. M. 1981. Water potential as a selective factor in the microbial ecology of soils, p. 141–151. In J. F. Parr, W. R. Gardner, and L. F. Elliott (ed.), Water Potential Relations in Soil Microbiology. Soil Science Society of America, Madison, Wis.Google Scholar
  66. 66.
    Guckert, J. B., M. A. Hood, and D. C. White. 1986. Phospholipid ester-linked fatty-acid profile changes during nutrient deprivation of Vibrio cholerae: increases in the trans/cis ratio and proportions of cyclopropyl fatty acids. Appl. Environ. Microbiol. 52:794–801.PubMedGoogle Scholar
  67. 67.
    Haldeman, D. L., and P. S. Amy. 1993. Bacterial heterogeneity in deep subsurface tunnels at Rainier Mesa, Nevada, Test Site. Microb. Ecol. 25:183–194.CrossRefGoogle Scholar
  68. 68.
    Haldeman, D. L., P. S. Amy, D. Ringelberg, and D. C. White. 1993. Characterization of the microbiology within a 21 m3 section of rock from the deep subsurface. Microb. Ecol. 26:145–159.CrossRefGoogle Scholar
  69. 69.
    Harris, R. F. 1981. Effect of water potential on microbial growth and activity, p. 23–97. In J. F. Parr, W. R. Gardner, and L. F. Elliott (ed.), Water Potential Relations in Soil Microbiology. Soil Science Society of America, Madison, Wis.Google Scholar
  70. 70.
    Harvey, R. W. 1991. Parameters involved in modeling movement of bacteria in groundwater, p. 89–114. In C. J. Hurst (ed.), Modeling the Environmental Fate of Microorganisms. American Society for Microbiology, Washington, D.C.Google Scholar
  71. 71.
    Harvey, R. W., and S. P. Garabedian. 1991. Use of colloid filtration theory in modeling movement of bacteria through a contaminated sandy aquifer. Environ. Sci. Technol. 25:175–185.CrossRefGoogle Scholar
  72. 72.
    Harvey, R. W., L. H. George, R. L. Smith, and D. R. LeBlanc. 1989. Transport of microspheres and indigenous bacteria through a sandy aquifer: results of natural-and forced-gradient tracer experiments. Environ. Sci. Technol. 23:51–56.CrossRefGoogle Scholar
  73. 73.
    Hassink, J., L. A. Bouwman, K. B. Zwart, and L. Brusaard. 1993. Relationship between habitable pore space, soil biota, and mineralization rates in grassland soils. Soil Biol. Biochem. 25:47–55.CrossRefGoogle Scholar
  74. 74.
    Heijnen, C. E., C. Chenu, and M. Robert. 1993. Micromorphological studies on clay-amended and unamended loamy sand, relating survival of introduced bacteria and soil structure. Geoderma 56:195–297.CrossRefGoogle Scholar
  75. 75.
    Heijnen, C. E., J. D. van Elsas, P. J. Kuikman, and J. A. van Veen. 1988. Dynamics of Rhizobium leguminosarum biovar trifolii introduced into soil; the effect of bentonite clay on predation by protozoa. Soil Biol. Biochem. 20:483–488.CrossRefGoogle Scholar
  76. 76.
    Heijnen, C. E., and J. A. van Veen. 1991. A determination of protective microhabitats for bacteria introduced into soil. FEMS Microbiol. Ecol. 85:73–80.CrossRefGoogle Scholar
  77. 77.
    Herman, D. C., and J. W. Costerton. 1993. Starvation-survival of a p-nitrophenol-degrading bacterium. Appl. Environ. Microbiol. 59:340–343.PubMedGoogle Scholar
  78. 78.
    Hicks, R. J., and J. K. Fredrickson. 1989. Aerobic metabolic potential of microbial populations indigenous to deep subsurface environments. Geomicrobiol. J. 7:61–11.CrossRefGoogle Scholar
  79. 79.
    Hirsch, P., and E. Rades-Rohlkohl. 1983. Microbial diversity in a groundwater aquifer in northern Germany. Dev. Ind. Microbiol. 24:213–224.Google Scholar
  80. 80.
    Hirsch, P., and E. Rades-Rohlkohl. 1988. Some special problems in the determination of viable counts of groundwater microorganisms. Microb. Ecol. 16:99–113.CrossRefGoogle Scholar
  81. 81.
    Hood, M. A., J. B. Guckert, D. C. White, and F. Deck. 1986. Effect of nutrient deprivation on lipid carbohydrate, DNA, RNA, and protein levels in Vibrio cholerae. Appl. Environ. Microbiol. 52: 788–793.PubMedGoogle Scholar
  82. 82.
    Hood, M. A., and M. T. MacDonell. 1987. Distribution of ultramicrobacteria in a gulf coast estuary and induction of ultramicrobacteria. Microb. Ecol. 14:113–127.CrossRefGoogle Scholar
  83. 83.
    Humphrey, B., S. Kjelleberg, and K. C. Marshall. 1983. Responses of marine bacteria under starvation conditions at a solid-water interface. Appl. Environ. Microbiol. 45:43–47.PubMedGoogle Scholar
  84. 84.
    Iizuka, T., S. Yamanaka, T. Nishiyama, and A. Hiraishi. 1998. Isolation and phylogenetic analysis of aerobic copiotrophic ultramicrobacteria from urban soil. J. Gen. Appl. Microbiol. 44:75–84.PubMedCrossRefGoogle Scholar
  85. 85.
    Janssen, P. H., A. Schuhmann, E. Morschell, and F. A. Rainey. 1997. Novel anaerobic ultramicrobacteria belonging to the Verrucomicrobiales lineage of bacterial descent isolated by dilution culture from anoxic rice paddy soil. Appl. Environ. Microbiol. 63:1382–1388.PubMedGoogle Scholar
  86. 86.
    Jurgens, G., K. Lindstrom, and A. Saano. 1997. Novel group within the kingdom Crenarcheota from boreal forest soil. Appl. Environ. Microbiol. 63:803–805.PubMedGoogle Scholar
  87. 87.
    Kajander, E. O., and N. Ciftcioglu. 1998. Nanobacteria: an alternative mechanism for pathogenic intra-and extracellular calcification and stone formation. Proc. Natl. Acad. Sci. USA 95:8274–8279.PubMedCrossRefGoogle Scholar
  88. 88.
    Kajander, E. O., I. Kuronen, and N. Ciftcioglu. 1996. Fatal (fetal) bovine serum: discovery of nanobacteria. Mol. Biol. Cell 7(Suppl.):517.Google Scholar
  89. 89.
    Kerr, R. A. 1996. Ancient life on Mars? Science 273:864–866.PubMedCrossRefGoogle Scholar
  90. 90.
    Kieft, T. L., P. S. Amy, F. J. Brockman, J. K. Fredrickson, B. N. Bjornstad, and L. L. Rosacker. 1993. Microbial abundance and activities in relation to water potential in the vadose zones of arid and semiarid sites. Microb. Ecol. 26:59–78.CrossRefGoogle Scholar
  91. 91.
    Kieft, T. L., and F. J. Brockman. M. Fletcher (ed.), Subsurface Microbiology and Bio geochemistry, in press. John Wiley & Sons, New YorkGoogle Scholar
  92. 92.
    Kieft, T. L., J. K. Fredrickson, J. P. McKinley, B. N. Bjornstad, S. A. Rawson, T. J. Phelps, F. J. Brockman, and S. M. Pfiffner. 1995. Microbiological comparisons within and across contiguous lacustrine, paleosol, and fluvial subsurface sediments. Appl. Environ. Microbiol. 61:749–757.PubMedGoogle Scholar
  93. 93.
    Kieft, T. L., W. P. Kovacik, Jr., D. B. Ringelberg, D. C. White, D. L. Haldeman, P. S. Amy, and L. E. Hersman. 1997. Factors limiting to microbial growth and activity at a proposed highlevel nuclear repository, Yucca Mountain, Nevada. Appl. Environ. Microbiol. 63:3128–3133.PubMedGoogle Scholar
  94. 94.
    Kieft, T. L., E. M. Murphy, D. L. Haldeman, P. S. Amy, B. N. Bjornstad, E. V. McDonald, D. B. Ringelberg, D. C. White, J. O. Stair, R. P. Griffiths, T. C. Gsell, W. E. Holben, and D. R. Boone. 1998. Microbial transport, survival, and succession in a sequence of buried sediments. Microb. Ecol. 36:336–348.PubMedCrossRefGoogle Scholar
  95. 95.
    Kieft, T. L., and T. J. Phelps. 1997. Life in the slow lane: activities of microorganisms in the subsurface, p. 137–163. In P. S. Amy and D. L. Haldeman (ed.), The Microbiology of the Terrestrial Subsurface. CRC Press, Boca Raton, Fla.Google Scholar
  96. 96.
    Kieft, T. L., D. B. Ringelberg, and D. C. White. 1994. Changes in ester-linked phospholipid fatty acid profiles of subsurface bacteria during starvation and desiccation in a porous medium. Appl. Environ. Microbiol. 60:3292–3299.PubMedGoogle Scholar
  97. 97.
    Kieft, T. L., and L. L. Rosacker. 1991. Application of respiration-and adenylate-based soil microbiological assays to deep subsurface terrestrial sediments. Soil Biol. Biochem. 23:563–568.CrossRefGoogle Scholar
  98. 98.
    Kieft, T. L., E. Soroker, and M. K. Firestone. 1987. Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biol. Biochem. 19:119–126.CrossRefGoogle Scholar
  99. 99.
    Kieft, T. L., E. Wilch, K. O’Connor, D. B. Ringelberg, and D. C. White. 1997. Survival and phospholipid fatty acid profiles of surface and subsurface bacteria in natural sediment microcosms. Appl. Environ. Microbiol. 63:1531–1542.PubMedGoogle Scholar
  100. 100.
    Kilbertus, G. 1980. Etude des microhabitats contenus dans les aggregats du sol. Leur relation avec la biomasse bacterienne et la taille des prokaryotes presents. Rev. Ecol. Biol. Sol 17:543–557.Google Scholar
  101. 101.
    Kirkland, B. L., F. L. Lynch, M. A. Rahnis, R. L. Folk, I. J. Molineux, and R. J. McLean. 1999. Alternative origins for nannobacteria-like objects in calcite. Geology 27:347–350.CrossRefGoogle Scholar
  102. 102.
    Kjelleberg, S. 1984. Effects of interfaces on survival mechanisms of copiotrophic bacteria in low-nutrient habitats, p. 151–159. In M. J. Klug and C. A. Reddy (ed.), Current Perspectives in Microbial Ecology. Proceedings of the Third International Symposium on Microbial Ecology. Michigan State University, East Lansing, 7–12 August 1983. American Society for Microbiology, Washington, D.C.Google Scholar
  103. 103.
    Kjelleberg, S., B. A. Humphrey, and K. C. Marshall. 1982. Effect of interfaces on small, starved marine bacteria. Appl. Environ. Microbiol. 43:1166–1172.PubMedGoogle Scholar
  104. 104.
    Kjelleberg, S., B. A. Humphrey, and K. C. Marshall. 1983. Initial stages of starvation and activity of bacteria at surfaces. Appl. Environ. Microbiol. 46:978–984.PubMedGoogle Scholar
  105. 105.
    Koch, A. L. 1997. What size should a bacterium be? A question of scale. Annu. Rev. Microbiol. 50:317–348.CrossRefGoogle Scholar
  106. 106.
    Kogure, K., U. Simidu, and N. Taga. 1979. A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 25:415–420.PubMedCrossRefGoogle Scholar
  107. 107.
    Kolbel-Boelke, J., E.-M. Anders, and A. Nehrkorn. 1988. Microbial communities in the saturated groundwater environment II: diversity of bacterial communities in a pleistocene sand aquifer and their in vitro activities. Microb. Ecol. 16:31–48.CrossRefGoogle Scholar
  108. 108.
    Kolbel-Boelke, J., B. Tienken, and A. Nehrkorn. 1988. Microbial communities in the saturated groundwater environment I: methods of isolation and characterization of heterotrophic bacteria. Microb. Ecol. 16:17–29.CrossRefGoogle Scholar
  109. 109.
    Kostiw, L. L., C. W. Boylen, and B. J. Tyson. 1973. Lipid composition of growing and starving cells of Arthrobacter crystallopoietes. J. Bacteriol. 111:102–111.Google Scholar
  110. 110.
    Kramer, J. G. and F. L. Singleton. 1992. Variations in rRNA content of marine Vibrio spp. during starvation survival and recovery. Appl. Environ. Microbiol. 58:201–207.PubMedGoogle Scholar
  111. 111.
    Kurath G., and R. Y. Morita. 1983. Starvation-survival physiological studies of a marine Pseudomonas sp. Appl. Environ. Microbiol. 45:1206–1211.PubMedGoogle Scholar
  112. 112.
    Kuske, C. R., S. M. Barns, and J. D. Busch. 1997. Diverse uncultivated bacterial groups from soils of the arid southwestern United States that are present in many geographic regions. Appl. Environ. Microbiol. 63:3614–3621.PubMedGoogle Scholar
  113. 113.
    Lappin-Scott, H. M., and J. W. Costerton. 1990. Starvation and penetration of bacteria in soils and rocks. Experientia 46:807–812.CrossRefGoogle Scholar
  114. 114.
    Lappin-Scott, H. M., and J. W. Costerton. 1992. Ultramicrobacteria and their biotechnological applications. Curr. Opin. Biotechnol. 3:283–285.CrossRefGoogle Scholar
  115. 115.
    Lappin-Scott, H. M., F. Cusack, and J. W. Costerton. 1988. Nutrient resuscitation and growth of starved cells in sandstone cores: a novel approach to enhanced oil recovery. Appl. Environ. Microbiol. 54:1373–1382.PubMedGoogle Scholar
  116. 116.
    Lappin-Scott, H. M., F. Cusack, F. MacLeod, and J. W. Costerton. 1988. Starvation and nutrient resuscitation of Klebsiel la pneumoniae isolated from oil well waters. J. Appl. Bacteriol. 64:541–549.PubMedCrossRefGoogle Scholar
  117. 117.
    Lewis, D. L., and D. K. Gattie. 1991. The ecology of quiescent microbes. ASM News 57:27–32.Google Scholar
  118. 118.
    Liesack, W., and E. Stackebrandt. 1992. Occurrence of novel groups of the domain Bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. J. Bacteriol. 174:5072–5078.PubMedGoogle Scholar
  119. 119.
    Lindahl, V., A. Frostegard, L. Bakken, and E. Baath. 1997. Phospholipid fatty acid composition of size fractionated indigenous soil bacteria. Soil Biol. Biochem. 29:1565–1569.CrossRefGoogle Scholar
  120. 120.
    Linder, K., and J. D. Oliver. 1989. Membrane fatty acid and virulence changes in the viable but nonculturable state of Vibrio vulnificus. Appl. Environ. Microbiol. 55:2837–2842.PubMedGoogle Scholar
  121. 121.
    Long, P. E., S. A. Rawson, E. Murphy, B. Bjornstad. 1992. Hydrologic and geochemical controls on microorganisms in subsurface formations, p. 49–71. In Pacific Northwest Laboratory Annual Report for 1991 to the DOE Office of Energy Research, Part 2, Environmental Sciences (PNL 8000, Pt. 2). Pacific Northwest Laboratories, Richland, Wash.Google Scholar
  122. 122.
    MacLeod, F. A., H. M. Lappin-Scott, and J. W. Costerton. 1988. Plugging of a model rock system by using starved bacteria. Appl. Environ. Microbiol. 54:1365–1372.PubMedGoogle Scholar
  123. 123.
    Maniloff, J. 1997. Nannobacteria: size limits and evidence. Science 276:176.CrossRefGoogle Scholar
  124. 124.
    Marshall, K. C. 1968. Interactions between colloidal montmorillonite and cells of Rhizobium species with different ionogenic surfaces. Biochim. Biophys. Acta 156:179–186.PubMedCrossRefGoogle Scholar
  125. 125.
    McInerney, M. J. 1991. Use of models to predict bacterial penetration and movement within a subsurface matrix, p. 115–135. In C. J. Hurst (ed.), Modeling the Environmental Fate of Microorganisms. American Society for Microbiology, Washington, D.C.Google Scholar
  126. 126.
    McKay, A. M. 1992. Viable but non-culturable forms of potentially pathogenic bacteria in water. Lett, in Appl. Microbiol. 14:129–135.CrossRefGoogle Scholar
  127. 127.
    McKay, D. S., E. K. Gibson, K. L. Thomas-Keprta, H. Vali, C. S. Romanek, S. J. Clemett, X. D. F. Chillier, C. R. Maechling, and R. N. Zare. 1996. Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273:924–930.PubMedCrossRefGoogle Scholar
  128. 128.
    McMahon, P. B., and F. H. Chapelle. 1991. Microbial production of organic acids in aquitard sediments and its role in aquifer geochemistry. Nature 349:233–235.CrossRefGoogle Scholar
  129. 129.
    Morita, R. Y. 1982. Starvation-survival of heterotrophs in the marine environment. Adv. Microb. Ecol. 6:171–198.CrossRefGoogle Scholar
  130. 130.
    Morita, R. Y. 1985. Starvation and miniaturization of heterotrophs, with special emphasis on maintenance of the starved viable state, p. 111–130. In M. Fletcher and G. D. Floodgate (ed.), Bacteria in their Natural Environments. Academic Press, London, United Kingdom.Google Scholar
  131. 131.
    Morita, R. Y. 1988. Bioavailability of energy and its relationship to growth and starvation survival in nature. Can. J. Microbiol. 34:436–441.CrossRefGoogle Scholar
  132. 132.
    Morita, R. Y. 1990. The starvation survival state of microorganisms in nature and its relation to the bioavailability of energy. Experientia 46:813–817.CrossRefGoogle Scholar
  133. 133.
    Moyer, C. L., and R. Y. Morita. 1989. Effect of growth rate and starvation-survival on cellular DNA, RNA, and protein of a psychrophilic marine bacterium. Appl. Environ. Microbiol. 55:2710–2716.PubMedGoogle Scholar
  134. 134.
    Murphy, E. M., J. A. Schramke, J. K. Fredrickson, H. W. Bledsoe, A. J. Francis, D. S. Sklarew, and J. C. Linehan. 1992. The influence of microbial activity and sedimentary organic carbon on the isotope geochemistry of the Middendorf aquifer. Water Resources Res. 28:723–740.CrossRefGoogle Scholar
  135. 135.
    Murphy, E. M., and J. A. Schramke. 1998. Estimation of microbial respiration rates in groundwater by geochemical modeling constrained with stable isotopes. Geochim. Cosmochim. Acta 62: 3395–3406.CrossRefGoogle Scholar
  136. 136.
    Nealson, K. H. 1997. Nannobacteria: size limits and evidence. Science 276:176.Google Scholar
  137. 137.
    Nealson, K. H. 1997. Sediment bacteria: who’s there, what are they doing, and what’s new? Annu. Rev. Earth Planetary Sci. 25:403–434.CrossRefGoogle Scholar
  138. 138.
    Novitsky, J. A., and R. Y. Morita. 1976. Morphological characteristics of small cells resulting from nutrient starvation of a psychrophilic marine vibrio. Appl. Environ. Microbiol. 32:616–622.Google Scholar
  139. 139.
    Novitsky, J. A., and R. Y. Morita. 1977. Survival of a psychrophilic marine vibrio under longterm nutrient starvation. Appl. Environ. Microbiol. 33:635–641.PubMedGoogle Scholar
  140. 140.
    Nystrom, T., N. H. Albertson, K. Flardh, and K. Kjelleberg. 1990. Physiological and molecular adaptation to starvation and recovery from starvation by the marine Vibrio sp. S14. FEMS Microbiol. Ecol. 74:129–140.CrossRefGoogle Scholar
  141. 141.
    O’Farrell, K. A., and P. H. Janssen. 1999. Detection of Verrucomicrobia in a pasture soil by PCR-mediated amplification of 16S rRNA genes. Appl. Environ. Microbiol. 65:4280–4284.PubMedGoogle Scholar
  142. 142.
    Olsen, R. A., and L. R. Bakken. 1987. Viability of soil bacteria: optimization of plate-counting technique and comparison between total counts and plate counts within different size groups. Microb. Ecol. 13:59–74.CrossRefGoogle Scholar
  143. 143.
    Onstott, T. C., T. J. Phelps, F. S. Colwell, D. Ringelberg, D. C. White, D. R. Boone, J. P. McKinley, T. O. Stevens, P. E. Long, D. L. Balkwill, T. Griffin, and T. Kieft. 1998. Observations pertaining to the origin and ecology of microorganisms recovered from the deep subsurface of Taylorsville Basin, Virginia. Geomicrobiol. J. 15:353–385.CrossRefGoogle Scholar
  144. 144.
    Onstott, T. C., T. J. Phelps, T. L. Kieft, F. S. Colwell, D. L. Balkwill., J. K. Fredrickson, and F. J. Brockman. 1999. A global perspective on the microbial abundance and activity in the deep subsurface, p. 489–500. In J. Seckbach (ed.), Enigmatic Microorganisms and Life in Extreme Environments. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  145. 145.
    Palumbo, A. V., P. M. Jardine, J. F. McCarthy, and B. R. Zaidi. 1991. Characterization and bioavailability of dissolved organic carbon in deep subsurface and surface waters, p. 2–57–2–68. In C. B. Fliermans and T. C. Hazen (ed.), Proceedings of the First International Symposium on Microbiology of the Deep Subsurface. WSRC Information Services, Aiken, N.C.Google Scholar
  146. 146.
    Papendick, R. I., and G. S. Campbell. 1981. Theory and measurement of water potential, p. 1–22. In J. F. Parr, W. R. Gardner, and L. F. Elliott (ed.), Water Potential Relations in Soil Microbiology. Soil Science Society of America, Madison, Wis.Google Scholar
  147. 147.
    Paul, E. A., and F. E. Clark. 1989. Soil Microbiology and Biochemistry. Academic Press, San Diego, Calif.Google Scholar
  148. 148.
    Pedersen, K. 1997. Microbial life in deep granitic rock. FEMS Microbiol. Rev. 20:399–414.CrossRefGoogle Scholar
  149. 149.
    Pedersen, K., J. Arlinger, S. Ekendahl, and L. Hallbeck. 1996. 16S rRNA gene diversity of attached and unattached bacteria in boreholes along the access tunnel to the Aspo hard rock laboratory, Sweden. FEMS Microbiol. Ecol. 19:249–262.Google Scholar
  150. 150.
    Pedersen, K., and S. Ekendahl. 1990. Distribution and activity of bacteria in deep granitic groundwaters of southeastern Sweden. Microb. Ecol. 20:37–52.CrossRefGoogle Scholar
  151. 151.
    Pedersen, J. C., and C. S. Jacobsen. 1993. Fate of Enterobacter cloacae JP120 and Alcaligenes eutrophus AEO106(pRO101) in soil during water stress: effects on culturability and viability. Appl. Environ. Microbiol. 59:1560–1564.PubMedGoogle Scholar
  152. 152.
    Pedersen, J. C., and T. D. Leser. 1992. Survival of Enterobacter cloacae on leaves and in soil detected by immunofluorescence microscopy in comparison with selective plating. Microb. Releases 1:95–102.Google Scholar
  153. 153.
    Pedone, V. A., and R. L. Folk. 1996. Formation of aragonite cement by nannobacteria in the Great Salt Lake, Utah. Geology 24:763–765.CrossRefGoogle Scholar
  154. 154.
    Phelps, T. J., D. B. Hedrick, D. Ringelberg, C. B. Fliermans, and D. C. White. 1989. Utility of radiotracer activity measurements for subsurface microbiology studies. J. Microbiol. Methods 9: 15–27.CrossRefGoogle Scholar
  155. 155.
    Phelps, T. J., E. M. Murphy, S. M. Pfiffner, and D. C. White. 1994. Comparison between geochemical and biological estimates of subsurface microbial activities. Microb. Ecol. 28:335–349.CrossRefGoogle Scholar
  156. 156.
    Phelps, T. J., E. G. Raione, D. C. White, and C. B. Fliermans. 1989. Microbial activities in deep subsurface sediments. Geomicrobiol J. 7:79–91.CrossRefGoogle Scholar
  157. 157.
    Postgate, J. R., and J. R. Hunter. 1962. The survival of starved bacteria. J. Gen. Microbiol. 29: 233–263.PubMedGoogle Scholar
  158. 158.
    Psenner, R., and M. Loferer. 1997. Nannobacteria: size limits and evidence. Science 276:176–177.Google Scholar
  159. 159.
    Rattray, E. A. S., J. I., Prosser, L. A. Glover, and K. Killham. 1992. Matric water potential in relation to survival and activity of a genetically modified microbial inoculum in soil. Soil Biol. Biochem. 24:421–425.CrossRefGoogle Scholar
  160. 160.
    Reynolds, P. J., P. Sharma, G. E. Jenneman, and M. J. McInerney. 1989. Mechanisms of microbial movement in subsurface materials. Appl. Environ. Microbiol. 55:2280–2286.PubMedGoogle Scholar
  161. 161.
    Rice, S. A., and J. D. Oliver. 1992. Starvation response of the marine barophile CNPT-3. Appl. Environ. Microbiol. 58:2432–2437.PubMedGoogle Scholar
  162. 162.
    Ringelberg, D. B., S. Sutton, and D. C. White. 1997. Biomass, bioactivity, and biodiversity: microbial ecology of the deep subsurface: analysis of ester linked phospholipid fatty acids. FEMS Microbiol. Rev. 20:371–377.CrossRefGoogle Scholar
  163. 163.
    Roberson, E. B., and M. K. Firestone. 1992. Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl. Environ. Microbiol. 58:1284–1291.PubMedGoogle Scholar
  164. 164.
    Robinson, J. B., P. O. Salonius, and F. E. Chase. 1965. A note on the differential response of Arthrobacter spp. and Pseudomonas spp. to drying in soil. Can. J. Microbiol. 11:746–748.PubMedCrossRefGoogle Scholar
  165. 165.
    Roszak, D. B., and R. R. Colwell. 1987. Survival strategies of bacteria in the natural environment. Microbiol. Rev. 51:365–379.PubMedGoogle Scholar
  166. 166.
    Scherer, C. G., and C. W. Boylen. 1977. Macromolecular synthesis and degradation in Arthrobacter during periods of nutrient deprivation. J. Bacteriol. 132:584–589.PubMedGoogle Scholar
  167. 167.
    Schut, E, M. Jansen, T. M. P. Gomez, J. C. Gottschall, H. Harder, and R. A. Prins. 1995. Substrate uptake and utilization by a marine ultramicrobacterium. Microbiology 141:351–361.PubMedCrossRefGoogle Scholar
  168. 168.
    Sharma, P. K., M. J. McInerney, and R. M. Knapp. 1993. In situ growth and activity and modes of penetration of Escherichia coli in unconsolidated porous materials. Appl. Environ. Microbiol. 59:3686–3694.PubMedGoogle Scholar
  169. 169.
    Shaw, J. C., B. Bramhill, N. C. Wardlaw, and J. W. Costerton. 1985. Bacterial fouling in a model core system. Appl. Environ. Microbiol. 49:693–701.PubMedGoogle Scholar
  170. 170.
    Shirey, J. I., and G. K. Bissonnette. 1991. Detection and identification of groundwater bacteria capable of escaping entrapment on 0.45-μm-pore-size membrane filters. Appl. Environ. Microbiol. 57:2251–2254.PubMedGoogle Scholar
  171. 171.
    Sinclair, J. L., and W. C. Ghiorse. 1989. Distribution of aerobic bacteria, protozoa, algae, and fungi in deep subsurface sediments. Geomicrobiol. J. 7:15–31.CrossRefGoogle Scholar
  172. 172.
    Smith, J. L., R. I. Papendick, D. F. Bezdicek, and J. M. Lynch. 1993. Soil organic matter dynamics and crop residue management, p. 65-94. In F. B. Metting (ed.), Soil Microbial Ecology, Applications in Agricultural and Environmental Management. Marcel Dekker, New York, N.Y.Google Scholar
  173. 173.
    Soroker, E., L. J. Waldron, and M. K. Firestone. 1987. Effects of solute vs. matric water potential on microbial activity and survival in soil, p. 189. In Agronomy Abstracts, American Society of Agronomy, Madison, Wis.Google Scholar
  174. 174.
    Stevens, T. O., and J. P. McKinley. 1996. Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270:450–454.CrossRefGoogle Scholar
  175. 175.
    Stotzky, G. 1986. Influence of soil mineral colloids on metabolic processes, adhesion, and ecology of microbes and viruses, p. 305-428. In P. M. Huang and M. Schnitzer (ed.), The Interaction of Soil Minerals with Natural Organics and Microbes, SSSA Spec. Publ. No. 17. Soil Science Society of America, Madison, Wis.Google Scholar
  176. 176.
    Stutz, E., G. Kahr, and G. Defago. 1989. Clays involved in suppression of tobacco black rot by a strain of Pseudomonas fluorescens. Soil Biol. Biochem. 21:361–366.CrossRefGoogle Scholar
  177. 177.
    Torrella, F., and R. Y. Morita. 1981. Microcultural study of bacterial size changes and microcolony and ultramicrocolony formation by heterotrophic bacteria in seawater. Appl. Environ. Microbiol. 41:518–527.PubMedGoogle Scholar
  178. 178.
    Tuckett, J. D., and W. E. C. Moore. 1959. Production of filterable particles by Cellovibrio gilvus. J. Bacteriol. 77:227–229.PubMedGoogle Scholar
  179. 179.
    Turpin, P. E., K. A. Maycroft, C. L. Rowlands, and E. M. H. Wellington. 1993. Viable but non-culturable salmonellas in soil. J. Appl. Bacteriol. 74:421–427.PubMedCrossRefGoogle Scholar
  180. 180.
    Uwins, P. J. R., R. I. Webb, and A. P. Taylor. 1998. Novel nano-organisms from Australian sandstones. Am. Mineral. 83:1541–1550.Google Scholar
  181. 181.
    Wan, J., J. L. Wilson, and T. L. Kieft. 1994. Influence of the gas-water interface on transport of microorganisms through unsaturated porous media. Appl. Environ. Microbiol. 60:509–516.PubMedGoogle Scholar
  182. 182.
    Williams, S. T. 1985. Oligotrophy in soil: fact or fiction?, p. 81-110. In M. Fletcher and G. D. Floodgate (ed.), Bacteria in Their Natural Environments. Academic Press, London, United Kingdom.Google Scholar
  183. 183.
    Wilson, J. T., J. F. McNabb, D. L. Balkwill, and W. C. Ghiorse. 1983. Enumeration and characterization of bacteria indigenous to a shallow water-table aquifer. Ground Water 24:225–233.Google Scholar
  184. 184.
    Winogradsky, S. 1925. Etudes sur la microbiologie du sol. I. Sur la methode. Ann. Inst. Pasteur 39:299–354.Google Scholar
  185. 185.
    Zvyagintsev, D. G., D. A. Gilichinskii, S. A. Blagodatskii, E. A. Varob’eva, G. M. Klebnikova, A. A. Arkhangelov, and N. N. Kudryavtseva. 1985. Survival time of microorganisms in permanently frozen sedimentary rocks and buried soils. Microbiology (USSR) 54:131–136.Google Scholar

Copyright information

© ASM Press, Washington, D.C. 2000

Authors and Affiliations

  • Thomas L. Kieft
    • 1
  1. 1.Department of BiologyNew Mexico Institute of Mining and TechnologySocorroUSA

Personalised recommendations